

Chemical Constituents from the Stem of Punica granatum
and the Root of Michelia alba

Jintana Pongpuntaruk

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Organic Chemistry
 Prince of Songkla University

Thesis Title	Chemical Constituents from the Stem of \square and the Root of \square TII
Author	Miss Jintana Pongpuntaruk
Major Program	Organic Chemistry

Major Advisor:
\qquad
(Assoc. Prof. Chanita Ponglimanont)

Co-advisor:

(Assoc. Prof. Dr. Chatchanok Karalai)

Examing Committee:

.....................................Chairperson
(Assoc. Prof. Dr. Kan Chantrapromma)
\qquad
(Assoc. Prof. Chanita Ponglimanont)
(Assoc. Prof. Dr. Chatchanok Karalai)
(Asst. Prof. Dr. Kanda Panthong)

The Graduate School, Prince of Songkla University, has approved this thesis as partial fulfillment of the requirements for the Master of Science Degree in Organic Chemistry

ชื่อวิทยานิพนธ์	องค์ประกอบทางเคมีจากลำต้นทับทิมและรากจำปี
ผู้เขียน	นางสาวจินตนา พงศ์ภัณฑารักษ์
สาขาวิชา	เคมีอินทรีย์
ปีการศึกษา	2552

บทคัดย่อ

ตอนที่ 1 องค์ประกอบทางเคมีจากลำต้นทับทิม
การศึกษาองค์ประกอบทางเคมีของส่วนสกัดหยาบเมทิลีนคลอไรด์ และ อะซีโตน จากลำต้นทับทิม สามารถแยกสารที่มีรายงานแล้วจำนวน 13 สาร ซึ่งเป็นสารประเภท triterpene 3 สาร คือ friedelin (CMD1), 5(6)-gluten-3 -ol (CMD2) และ betulinic acid (CMD3), สารประเภท steroids 7 สาร คือ สารผสมของ -sitosterol (CMD4) และ stigmasterol (CMD5), stigmast-4-en-3one (CMD6), 6 -hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), 5 -cholest-7-en-3-one (CMD9) และ lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-Omethylellagic acid (CMD12), 5,7,3', 4', 5^{\prime}-penta-O-methylgallocatechin (CMD13)

โครงสร้างของสารประกอบเหล่านี้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี

ตอนที่ 2 องค์ประกอบทางเคมีจากรากจำปี
การศึกษาองค์ประกอบทางเคมีของส่วนสกัด หยาบเมทิลีนคลอไรด์ จากรากจำปี สามารถแยกสารได้จำนวน 7 สาร ซึ่งเป็นสารประเภท sesquiterpene 6 สาร คือ costunolide (JPD1), parthenolide (JPD2), 9β-hydroxy-11 $\beta \mathrm{H}$-dihydroparthenolide (JPD3), reynosin (JPD4), T-cadinol (JPD5), สารใหม่ 1 สาร คือ $-\left(3^{\prime}, 4^{\prime}, 5^{\prime}\right.$-trihydroxy- 3^{\prime}-methylbutanoyloxy) $-11 \beta \mathrm{H}$ dihydroparthenolide (JPD6) และสารประเภท lignan 1 สาร คือ lariciresinol (JPD7)

โครงสร้างของสารประกอบเหล่านี้วิเคราะห์โดยใช้ข้อมูลทางสเปกโทรสโกปี

CMD1

CMD3

CMD5

CMD7

CMD2

CMD4

CMD6

CMD8

CMD9

CMD11

CMD13

JPD2

CMD10

CMD12

JPD1

JPD3

JPD4

JPD5

JPD6

Thesis Title	Chemical Constituents from the Stem of and the Root of \qquad
Author	Miss. Jintana Pongpuntaruk
Major Program	Organic Chemistry
Academic Year	2009

ABSTRACT
 Part I Chemical Constituents from the Stem of Punica granatum

Investigation of the crude methylene chloride and acetone extracts of
 friedelin (CMD1), 5(6)-gluten- -ol (CMD2) and betulinic acid (CMD3), seven steroids: a mixture of β-sitosterol (CMD4) and stigmasterol (CMD5), stigmast-4-en-3-one (CMD6 -hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), -cholest-7-en-3-one (CMD9) and lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-O-methylellagic acid (CMD12) and 5,7,3', 4', 5^{\prime}-penta-Omethylgallocatechin (CMD13). Their structures were elucidated by spectroscopic methods.

Part II Chemical Constituents from the root of Michelia alba

Investigation of the crude methylene chloride extract of the root of
 parthenolide (JPD2), 9β-hydroxy-11 β H-dihydroparthenolide (JPD3), reynosin (JPD4), T-cadinol (JPD5), a new compound -(3', $4^{\prime}, 5^{\prime}$-trihydroxy-3'-methylbutanoyloxy)-11 H -dihydroparthenolide (JPD6) and one lignan: lariciresinol (JPD7). Their structures were elucidated by spectroscopic methods.

CMD1

CMD3

CMD5

CMD7

CMD2

CMD4

CMD6

CMD8

CMD9

CMD11

CMD13

JPD2

CMD10

CMD12

JPD1

JPD3

JPD4

JPD5

JPD6

ACKNOWLEDGEMENT

I wish to express my sincere thanks to Associate Professor Chanita Ponglimanont, my major advisor for her constant guidance, useful suggestions, appreciation, sincere advice and kindness. This was a great motivator for me and will remain to be deep-rooted in my heart.

My sincere thanks are expressed to Associate Professor Dr. Chatchanok Karalai my co-advisor for his valuable advice. I would like to offer thanks to Assoc. Prof. Dr. Kitichate Sridith for plant identification.

I would like to express my appreciation to the staffs of the Department of Chemistry, Faculty of Science, Prince of Songkla University for making this thesis possible. Dr. Yaowapa Sukpondma is highly acknowledged for recording NMR spectral data.

This research was supported by a scholarship from the Center for Innovation in Chemistry (PERCH-CIC), Commission on Higher Education, Ministry of Educaion. I would like to acknowledge the Faculty of Science Research Fund and the Graduate School, Prince of Songkla University for partial financial support.

THE RELEVANCE OF THE RESEARCH WORK TO THAILAND

The purpose of this research is to investigate the chemical constituents from the stem of the basic research on the Thai medicinal plants. Thirteen compounds and seven

CONTENTS

Page
CONTENTS xiii
LIST OF TABLES xvi
LIST OF ILLUSTRATIONS xviii
LIST OF ABBREVIATIONS AND SYMBOLS xxi
PART 1 Chemical constituents from the stem of Punica granatum CHAPTER 1.1 INTRODUCTION 1
1.1.1 Introduction 1
1.1.2 Review of Literatures 3
1.1.3 Objective 14
CHAPTER 1.2 EXPERIMENTAL 15
1.2.1 Instruments and Chemicals 15
1.2.2 Plant Material 16
1.2.3 Extraction and Isolation 16
1.2.4 Isolation and Chemical Investigation 17
1.2.4.1 Investigation of the crude methylene chloride extract 17
from the stem of
1.2.4.2 Investigation of the crude acetone 21extract from the stem of
CHAPTER 1.3 RESULTS AND DISCUSSION 23
1.3.1 Structure elucidation of compounds from the stem of 23
1.3.1.1 Compound CMD1 24
1.3.1.2 Compound CMD2 27
1.3.1.3 Compound CMD3 30

CONTENTS (Continued)

Page
1.3.1.4 Compounds CMD4 and CMD5 33
1.3.1.5 Compound CMD6 34
1.3.1.6 Compound CMD7 37
1.3.1.7 Compound CMD8 40
1.3.1.8 Compound CMD9 43
1.3.1.9 Compound CMD10 46
1.3.1.10 Compound CMD11 49
1.3.1.11 Compound CMD12 51
1.3.1.13 Compound CMD13 53
PART II Chemical constituents from the root of Michelia alba CHAPTER 2.1 INTRODUCTION 55
2.1.1 Introduction 55
2.1.2 Review of Literatures 57
2.1.3 Objective 78
CHAPTER 2.2 EXPERIMENTAL 79
2.2.1 Instruments and Chemicals 79
2.2.2 Plant Material 80
2.2.3 Extraction and Isolation 80
2.2.4 Isolation and Chemical Investigation 81
2.2.4.1 Investigation of the crude methylene chloride extract 81 from the root of

\qquad

CONTENTS (Continued)

Page
CHAPTER 2.3 RESULTS AND DISCUSSION 84
2.3.1 Structure elucidation of compounds from the root of 84
2.3.1.1 Compound JPD1 85
2.3.1.2 Compound JPD2 88
2.3.1.3 Compound JPD3 91
2.3.1.4 Compound JPD4 94
2.3.1.5 Compound JPD5 96
2.3.1.6 Compound JPD6 98
2.3.1.7 Compound JPD7 101
CHAPTER 4 CONCLUSION 104
REFERENCES 105
APPENDIX 108
VITAE 138

LIST OF TABLES

Tables Page
1 Compounds from plants of Punica genus 4
$2{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD1 $\left(\mathrm{CDCl}_{3}\right)$ 25 and friedelin ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD2 $\left(\mathrm{CDCl}_{3}\right)$ 28 and 5(6)-gluten- -ol ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$4{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD3 $\left(\mathrm{CDCl}_{3}\right)$ 31 and betulinic acid ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$5 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD6 $\left(\mathrm{CDCl}_{3}\right)$ 35 and stigmast-4-en-3-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$6{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD7 $\left(\mathrm{CDCl}_{3}\right)$ 38
an -hydroxystigmast-4-en-3-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$7{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD8 $\left(\mathrm{CDCl}_{3}\right)$ 41 and ergosterol peroxide. ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$8{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds $\mathbf{C M D} 9\left(\mathrm{CDCl}_{3}\right)$ 43 an -cholest-7-en-3-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$9{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD10 $\left(\mathrm{CDCl}_{3}\right)$ 47 and lophenol ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$10{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD11 $\left(\mathrm{CDCl}_{3}\right)$ 50 and 5-methylmellein ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$11{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD12 52
$\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d}_{6}\right)$ and 3,4,3'-tri-O-methylellagic acid ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound CMD13 54
and comparison with ${ }^{1} \mathrm{H}$ NMR of gallocatechin
13 Compounds from plant of Micheliagenus 58
$14{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD1 $\left(\mathrm{CDCl}_{3}\right)$ 86 and costunolide ($\mathbf{R}, \mathrm{CDCl}_{3}$)

LIST OF TABLES (Continued)

Tables Page
$15{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD2 $\left(\mathrm{CDCl}_{3}\right)$ 89 and parthenolide ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD3 $\left(\mathrm{CDCl}_{3}\right)$ 92 and 9β-hydroxy- $11 \beta \mathrm{H}$-dihydroparthenolide $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$
$17{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD4 $\left(\mathrm{CDCl}_{3}\right)$ 95 and reynosin ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$18{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD5 $\left(\mathrm{CDCl}_{3}\right)$ 97 and T-cadinol ($\mathbf{R}, \mathrm{CDCl}_{3}$)
$19{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC and COSY spectral data of compounds JPD6 99 $\left(\mathrm{CDCl}_{3}\right)$ and comparison of ${ }^{13} \mathrm{C}$ NMR with JPD3
$20{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, HMBC spectral data of compounds JPD7 $\left(\mathrm{CDCl}_{3}\right)$ 102 and lariciresinol ($\mathbf{R}, \mathrm{MeOD}$)

LIST OF ILLUSTATIONS

Schemes Page
1 Extraction of the stem of 16
2 Isolation of compounds CMD1-CMD6, CMD9-CMD13 17
from the methylene chloride extract
3 Isolation of compounds CMD7,CMD8 from the acetone extract 21
4 Extraction of the root of 80
5 Isolation of compounds JPD1-JPD7 81
from the methylene chloride extract
Figures Page
1 Different parts of LINN 2
2 Selected HMBC correlations of CMD1 25
3 Selected HMBC correlations of CMD2 28
4 Selected HMBC correlations of CMD3 31
5 Selected HMBC correlations of CMD6 35
6 Selected HMBC correlations of CMD7 38
7 Selected HMBC correlations of CMD8 41
8 Selected HMBC correlations of CMD9 44
9 Selected HMBC correlations of CMD10 47
10 Selected HMBC correlations of CMD11 50
11 Selected HMBC correlations of CMD12 52
12 Selected HMBC correlations of CMD13 54
13 Different parts of 56
14 Selected HMBC correlations of JPD1 86
15 Selected HMBC correlations of JPD2 89
16 Selected HMBC correlations of JPD3 92
17 Selected HMBC correlations of JPD 4 95
18 Selected HMBC correlations of JPD 5 97

LIST OF ILLUSTATIONS (Continued)

Page
19 Selected HMBC correlations of JPD 6 99
20 Selected HMBC correlations of JPD 7 102
21 IR (neat) spectrum of compound CMD1 109
$22{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD1 109
$23{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD1 110
$24{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD2 110
$25{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD2 111
26 IR (neat) spectrum of compound CMD3 111
$27{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD3 112
$28{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD3 112
$29{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of 113 compounds CMD4+CMD5
30 UV (MeOH) spectrum of compound CMD6 113
31 IR (neat) spectrum of compound CMD6 114
$32{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD6 114
$33{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD6 115
$34{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD7 115
$35{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD7 116
$36{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD8 116
$37^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD8 117
$38{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD9 117
$39{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD9 118
$40{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD10 118
$41{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD10 119
42 IR (neat) spectrum of compound CMD11 119
$43{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD11 120
$44{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD11 120

LIST OF ILLUSTATIONS (Continued)

Page
45 IR (neat)) spectrum of compound CMD12 121
$46{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{DMSO}-\mathrm{d}_{6}+\mathrm{CDCl}_{3}\right)$ spectrum of 121 compound CMD12
$47{ }^{13} \mathrm{C}$ NMR (75 MHz) (DMSO- $\mathrm{d}_{6}+\mathrm{CDCl}_{3}$) spectrum of 122 compound CMD12
48 IR (neat) spectrum of compound CMD13 122
$49{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD13 123
$50{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD13 123
51 IR (neat)) spectrum of compound JPD1 124
$52{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD1 124
$53{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD1 125
$54{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD2 125
$55{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD2 126
56 IR (neat)) spectrum of compound JPD3 126
$57{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD3 127
$58{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD3 127
59 IR (neat)) spectrum of compound JPD4 128
$60{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD4 128
$61{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD4 129
62 IR (neat)) spectrum of compound JPD5 129
$63{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD5 130
$64{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD5 130
65 IR (neat)) spectrum of compound JPD6 131
$66{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6 131
$67{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6 132
68 $\mathrm{C}^{\mathrm{C}}{ }_{3}$) spectrum of compound JPD6 132
69 C C_{3}) spectrum of compound JPD6 133

LIST OF ILLUSTATIONS (Continued)

Page
70 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6 133
71 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6 134
72 2D HMBC (CDCl_{3}) spectrum of compound JPD6 134
73 2D NOESY (CDCl_{3}) spectrum of compound JPD6 135
74 EIMS spectrum of compound JPD6 135
75 HRFAB spectrum of compound JPD6 136
76 IR (neat)) spectrum of compound JPD7 136
$77{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD7 137
$78{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD7 137

LIST OF ABBREVIATIONS AND SYMBOLS

```
    = singlet
    = doublet
    = triplet
    = quartet
    = multiplet
    = doublet of doublet
            |||ा||ா|ा|||doublet of doublet of doublet
            = doublet of triplet

\(=\) broad singlet
\(=\) broad doublet
\(=\quad\) gram
\(\mathrm{nm} \quad=\quad\) nanometer
\(\mathrm{mp} \quad=\quad\) melting point
\(\mathrm{cm}^{-1}=\) reciprocal centimeter (wave number)
\(=\quad\) chemical shift relative to TMS
\(=\) coupling constant
\(=\quad\) specific rotation
\(=\) maximum wavelength
```


LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

	$=$ absorption frequencies
	$=$ molar extinction coefficient
m / z	$=$ a value of mass divided by charge
${ }^{\circ} \mathrm{C}$	$=$ degree celcius
MHz	$=$ Megahertz
ppm	$=$ part per million
c	$=$ Mltraviolet
IR	$=$ Mass Spectroscopy
UV	$=$ Electron Impact Mass Spectroscopy
MS	$=$ Fast atom bombardment mass spectrometry
EIMS	$=$ Nuclear Magnetic Resonance
FAB	$=$ One Dimensional Nuclear Magnetic Resonance
NMR	$=$ Correlation Spectroscopy
1D NMR	$=$ Distortionless Enhancement by Polarization Transfer
2D NMR	$=$
COSY	$=$
DEPT	$=$

LIST OF ABBREVIATIONS AND SYMBOLS (Continued)

HMBC	$=$ Heteronuclear Multiple Bond Correlation
HMQC	$=$ Heteronuclear Multiple Quantum Coherence
NOESY	$=$ Nuclear Overhauser Effect Spectrosopy
CC	$=$ Column Chromatography
QCC	$=$ Quick Column Chromatography
PLC	$=$ Preparative Thin Layer Chromatography
TMS	$=$ tetramethylsilane
CDCl_{3}	$=$ deuterochloroform
$\mathrm{CD}_{3} \mathrm{OD}$	$=$ deuteromethanol
DMSO_{6}	$=$ deuterodimethylsulfoxide

CHAPTER 1.1
 Introduction

1.1.1 Introduction

Punica granatum LINN. (pomegranate in English), is widely distributed in Southeast Asia. It is an ancient and highly distinctive fruit, the predominant member of two species comprising the Punicaceae family, granatum and protopunica. The pomegranate fruit as a medicinal plant (Al-Maiman \& Ahnad, 2002) is now supported by data obtained from modern science showing that the fruit contains anti-carcinogenic (e.g., Adhami \& Mukhtar, 2006; Bell \& Hawthorne, 2008), anti-microbial (Reddy, Gupta, Jacob, Khan, \& Ferreira, 2007) and anti-viral compounds (Kotwal, 2007; (Shwartza et al., 2009). The methanolic extract from the flowers of P. granatum was found to inhibit a tumor necrosis factor-a (TNF-a)induced cytotoxicity in L929 cells. (Xie et al., 2008).
P. granatum is a small-sized, shrubby tree, 12-16 feet tall, has spiny branches. The leaves are glossy and lanceshaped, and the bark of the tree turns gray as the tree ages. The flowers are large, red, white, or variegated and have a tubular calyx that eventually becomes the fruit. The ripe pomegranate fruit can be up to five inches wide with a deep red, leathery skin, is grenade-shaped, and crowned by the pointed calyx. The fruit contains many seeds separated by white, membranous pericarp, and each is surrounded by small amounts of tart red juice.

In Thailand, P. granatum has been found in every part of the country. It has many local Thai names : Thapthim (ทับทิม) Central; Phila (พิลา) Nong Khai; Phila Khao (พิลาขาว), Ma kong kaeo (มะก่องแก้ว) Nan; Ma Ko (มะเก๊าะ) Northern; Makchange (หมากจัง) Mee Hong Son (Smitinand, 2001).

Figure 1 Different parts of Punica granatum LINN.

1.1.2 Review of Literatures

Chemical constituents isolated from P. granatum were summarized in Table 1. Information obtained from SciFinder Scholar copyright in 2009 will be presented and classified into groups: alkaloids, steroids, flavonoids, tannins, catechins, ellagic, coumarins, gallic acid, prenylpropanoid and triterpenoids.

Table 1 Compounds from plants of Punica genus.

a: tannins	b: flavonoids
c: steroids	d: triterpenes
e: alkaloids	f: ellagic acid
g: catechins	h: gallic acid
i: coumarins	j: phenylpropanoid

Scientific name	Part	Compounds	Bibliography
P. granatum	Fruit Stem Bark Seeds Root Bark	```punicalagin, 1a punicalin, 2a 4,6-(S,S)-gallagyl-D-glucose, 3a 2,3-(S)-hexahydroxydiphenoyl-4,6- (S,S)-gallagyl-D-glucose, 4a 2-O-galloyl-4,6-(S,S)-gallagyl-D- glucose, 5a estrone, 3c coumestrol, \(\mathbf{1 i}\) genistein, 1b daidzein, 2b genistin, 3b daidzin, 4b hygrine, 1e sedridine, \(\mathbf{2 e}\) pseudopelletierine, 3e pelletierine, 4e norpseudopelletierine, \(\mathbf{5 e}\) \(N\)-methylpelletierine, \(\mathbf{6 e}\) norhygrine, 7e```	Mayer et al., 1977 Tanaka et al., 1986 Moneam et al., 1988 Neuhofer et al., 1993

Scientific name	Part	Compounds	Bibliography
	Head wood Fruit Fruit Seed Flower	3'-O-methyl-3,4methylenedioxyellagic acid, if methyl gallate, $\mathbf{1 h}$ gallic acid, 2h ellagic acid, $\mathbf{2 f}$ 3,3'-di-O-methyl-ellagic acid, $2 f$ corilagin, 8a prodelphinidin B, $\mathbf{1 g}$ prodelphinidin C, 2g catechin-(4-8)-gallocatechin, $\mathbf{3 g}$ gallocatechin, $\mathbf{4 g}$ α-punicalagin, 6a β-punicalagin, 7a coniferyl 9-O-[β-Dapiofuranosyl($1 \beta 6$)]-O- β-Dglucopyranoside, $\mathbf{1 j}$ sinapyl 9-O-[β-Dapiofuranosyl($1 \beta 6$)]-O- β-Dglucopyranoside, $\mathbf{2 j}$ daucosterol, 1c 3,3'-di-O-Methylellagic acid, 3f 3,3',4'-tri-O-Methylellagic acid, $\mathbf{4 f}$ pomegranatate, $\mathbf{5 f}$ daucosterol, 1c ellagic acid, $\mathbf{2 f}$ maslinic acid, 1d 3,3',4'-tri-O-Methylellagic acid, 4f ethyl brevifolincarboxylate, $\mathbf{2 i}$	Tommy et al., 2001 Plumb et al., 2002 Machado et al., 2002 Wang et al., 2004 Wang et al., 2006
Scientific	Part	Compounds	Bibliography

name			
	Flower	punicanolic acid, 2d ursolic acid, 3d β-sitosterol, 2c asiatic acid, 2b luteolin, 4d tricetin , $\mathbf{6 b}$ maslinic acid, 1d 1,2,6-tri-O-Galloyl- β-D- glucopyranoside, 9a 1,2-di-O-Galloyl-4,6-O-(S)- hexahydroxydiphenoyl- β-D- glucopyranoside, 10a	Xie et al.,2008

structures

a: tannins

$\mathbf{I}, \mathbf{R R}^{\mathbf{1}}=$

II, $\mathbf{R}=\mathbf{R}^{\mathbf{1}}=\mathbf{H}$

1a: punicalagin (I)
2a: punicalin (II)

3a: 4,6-(S,S)-gallagyl-D-glucose

4a: 2,3-(S)-hexahydroxydiphenoyl4,6(S,S) gallagyl-D-glucose
$\mathbf{I}, \mathbf{R}=\mathbf{R}^{\mathbf{1}}=\mathbf{H}$

II, $\mathbf{R}^{1} \mathbf{R}^{\mathbf{2}}=$

5a: 2-O-galloyl-4,6-($(, S)$-gallagylglucose

III, $\mathrm{R}^{1}=\mathrm{H}, \mathrm{R}^{2}=-\mathrm{OC}$

7a: β-punicalagin

8a: corilagin

b: flavonoids

1b: genistein

3b: genistin

9a: 1,2,6-tri-O-galloyl - β-Dglucopyranoside

10a: 1,2-di-O-galloyl-4,6-O-(S)hexahydroxydiphenoyl glucopyranoside

2b: daidzein

4b: daidzin

5b: asiatic acid

6b: tricetin

c: steroids

1c: daucosterol

3c: estrone
d: triterpenes

1d: maslinic acid

2d: punicanolic acid

3d: ursolic acid

4d: luteolin
e: alkaloids

4e: pelletierine

7e: norhygrine
f: ellagic acid

2e: sedridin

5e: norpseudopelletierine

6e: N-methylpelletierine

3e: pseudopelletierine

1f: 3'-O-methyl-3,4methylenedioxyellagic acid

2f: ellagic acid

3f: 3,3'-di-O-methyl-ellagic acid

5f: pomegranatate
g: catechins

1g: prodelphinidin B

3g: catechin-(4-8)-gallocatechin

4f: 3,3',4'-tri-O-methylellagic acid

4g: gallocatechin
h: gallic acid

1h: methyl gallate
i: coumarins

1i: coumestrol
j: phenylpropanoids

$$
\begin{array}{ll}
\text { I } & \text { R }=\mathbf{H} \\
\text { II } & \text { R }=\text { OMe }
\end{array}
$$

2h: gallic acid

2i: ethyl brevifolincarboxylate
$\mathbf{1 j}$: coniferyl 9-O-[$[\beta-\mathrm{D}-$
apiofuranosyl(1 $1 \beta 6$)]-O- $\beta-\mathrm{D}-$
glucopyranoside

2j: sinapyl 9-O-[β-D-
apiofuranosyl(1 $1 \beta 6$)]-O- β-D-
glucopyranoside

1.1.3 Objective

This part of research work involved isolation, purification and structure elucidation of chemical constituents from the stem of Punica granatum.

CHAPTER 1.2

EXPERIMENTAL

1.2.1 Instruments and Chemicals

Melting points were determined on the Fisher-John melting point apparatus. The UV spectra were measured with a SPECORD S 100 (Analytikjena) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in MeOH solution. The optical rotation $[\alpha]_{\mathrm{D}}$ was measured in chloroform and methanol solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-Elmer FTS FT-IR spectrophotometer. NMR spectra were recorded using 300 MHz Bruker FTNMR Ultra Shield ${ }^{\mathrm{TM}}$ spectrometers in acetone- d_{6} and CDCl_{3} with TMS as the internal standard. Chemical shifts are reported in δ (ppm) and coupling constants (J) are expressed in hertz. EI and HREI mass spectra were measured on a Kratos MS 25 RFA spectrometer. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 H (Merck) and silica gel 100 (Merck), respectively.

1.2.2 Plant Material

The stem of P. granatum was collected from Chumphon province in the southern part of Thailand, in May 2008. Identification was made by Assoc. Prof. Dr. Kitichate Sridith and a specimen (No.0013591) deposited at PSU Herbarium, Department of Biology, Faculty of Science, Prince of Songkla University.

1.2.3 Extraction and Isolation

The chopped air-dried stem of P. granatum (8.0 kg) was successively extracted with methylene chloride and acetone (one week for each solvent) at room temperature. The solvent was evaporated under reduced pressure to give concentrated solution of methylene chloride extract as yellow viscous residue (46.5 g) and brownish acetone extract $(15.0 \mathrm{~g})$, respectively. The process of extraction was shown in Scheme 1

Scheme 1 Extraction of the stem of P.granatum

1.2.4 Isolation and Chemical Investigation

1.2.4.1 Investigation of the crude methylene chloride extract from the stem of P. granatum.

*No further investigation
Scheme 2 Isolation of compounds CMD1- CMD6, CMD9- CMD13 from the methylene chloride extract

The crude methylene chloride extract as yellow viscous residue (46.5 g) was subjected to quick column chromatography over silica gel using solvent of increasing polarity from hexane through acetone. The eluates were collected and combined based on TLC characteristics to give eighteen fractions (T1-T18).

Fraction T6 (4.5 g) was filtered and washed with hexane to give CMD1: friedelin (1.2 g) as white crystal and the mother liquor as yellow viscous oil after evaporation of the solvent.

Fraction T7 (3.5 g) was purified by QCC with a gradient of acetonehexane to afford twenty fractions (T7.1-T7.20).

Subfraction T7.15 (135.5 mg) was recrystallized from the methylene chloride to give CMD9: 5α-cholest-7-en-3-one (58.0 mg).

Subfraction T7.17 (56.7 mg) was purified by CC with 7\% EtOAc/hexane to give CMD2: 5(6)-gluten-3 α-ol (9.4 mg).

Subfraction T7.20 (30.2 mg) was purified by CC with 20% acetone/hexane to give CMD11: 5-methylmellein (4.5 mg).

Fraction $8(6.7 \mathrm{~g})$ was separated by CC with a gradient of acetonehexane to afford twelve fractions (T8.1-T8.12).

Subfraction T8.7 (3.6 g) was filtered and washed with hexane to yield a mixture of CMD4: β-sitosterol and CMD5: stigmasterol (2.3 g) as a white solid and the mother liquor as yellow viscous oil after evaporation of the solvent.

Subfraction T8.10 (43.2 mg) was purified by CC with 15% acetone/hexane to give CMD10: lophenol (10.7 mg).

Fraction T11 (4.1g) was separated by CC with $30 \% \mathrm{EtOAc} /$ hexane to give CMD3: betulinic acid (1.7 g).

Fraction T12 (1.2 g) was separated by CC with 30% acetone/hexane to give CMD6: stigmast-4-en-3-one (30 mg).

Fraction T13 (113.6 mg) was separated by CC with 30% acetone/hexane to give CMD13: 5,7,3', $4^{\prime}, 5^{\prime}$-penta-O-methylgallocatechin (8.2 mg).

Fraction T14 (221.7 mg) was separated by CC with 30% EtOAc/hexane to give CMD12: 3,4,3'-tri-O-methylellagic acid (9.9 mg).

Compound CMD1: friedelin, white solid, m.p. $245-247^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}$: $-28.2^{\circ}\left(\mathrm{c}=0.63, \mathrm{CHCl}_{3}\right)$; ref $[\alpha]_{\mathrm{D}}{ }^{28}:-22.3^{\circ}\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right)($ Ahad et al., 1991); IR (neat) $v_{\max } 1715\left(\mathrm{C}=\mathrm{O}\right.$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 2.

Compound CMD2: $5(6)$-gluten- $3 \alpha-$ ol, white solid, m.p. $210-212^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}{ }^{28}:+61.6^{\circ}\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max } 3415(\mathrm{O}-\mathrm{H}$ stretching) and $1618(\mathrm{C}=\mathrm{C}$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 75 MHz) spectral data see Table 3.

Compound CMD3: betulinic acid, white solid, m.p. $280-282^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}$ ${ }^{28}:+18.7^{\circ}\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right) ; \operatorname{ref}[\alpha]_{\mathrm{D}}{ }^{28}:+17.7^{\circ}\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)$ (Thongdeeying,
2005); IR (neat) $v_{\max } 3413$ ($\mathrm{O}-\mathrm{H}$ stretching), 1686 ($\mathrm{C}=\mathrm{O}$ stretching) and 1645 ($\mathrm{C}=\mathrm{C}$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 75 MHz) spectral data see Table 4.

Compounds CMD4 and CMD5: a mixture of β-sitosterol and stigmasterol, white solid; IR (neat) $v_{\max } 3425$ (O-H stretching) and $1642(\mathrm{C}=\mathrm{C}$ stretching) cm^{-1}.

Compound CMD6: stigmast-4-en-3-one, colorless viscous oil; $[\alpha]_{\mathrm{D}}{ }^{28}$: $+67.7^{\circ}\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right) ; \operatorname{ref}[\alpha]_{\mathrm{D}}{ }^{28}:+66.4^{\circ}\left(\mathrm{c}=0.40, \mathrm{CHCl}_{3}\right)($ Della et al., 1990); UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 241(4.21) \mathrm{nm}$; IR (neat) $v_{\max } 1674(\mathrm{C}=\mathrm{O}$ stretching) and $1616\left(\mathrm{C}=\mathrm{C}\right.$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 5.

Compound CMD9: 5α-cholest-7-en-3-one, white solid, m.p. 144-146 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}:+12.1^{\circ}\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right)$; IR (neat) $v_{\max } 3424$ (O-H stretching) and 1616 $\left(\mathrm{C}=\mathrm{C}\right.$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 8.

Compound CMD10: lophenol, white solid, m.p. $149-150^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}$: $+7.0^{\circ}\left(\mathrm{c}=0.04, \mathrm{CHCl}_{3}\right) ; \operatorname{ref}[\alpha]_{\mathrm{D}}{ }^{28}:+5.0^{\circ}\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)($ Farines et al., 1988); IR (neat) $v_{\max } 3424\left(\mathrm{O}-\mathrm{H}\right.$ stretching) and $1618\left(\mathrm{C}=\mathrm{C}\right.$ stretching cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 9.

Compound CMD11: 5-methylmellein, colorless viscous oil; $[\alpha]_{D}{ }^{28}$:$122^{\circ}\left(\mathrm{c}=0.8, \mathrm{CHCl}_{3}\right) ;$ ref $[\alpha]_{\mathrm{D}}{ }^{28}:-118^{\circ}\left(\mathrm{c}=0.06, \mathrm{CHCl}_{3}\right)($ Cambie et al., 1991); UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 208(3.32) \mathrm{nm}$; IR (neat) $v_{\max } 3290(\mathrm{O}-\mathrm{H}$ stretching), $1669(\mathrm{C}=\mathrm{O}$ stretching) and 1610 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 10.

Compound CMD12: 3,4,3'-tri-O-methylellagic acid, white solid; UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 248$ (3.55) and 371 (2.94) nm; IR (neat) $\nu_{\max } 3400(\mathrm{O}-\mathrm{H}$ stretching), $1744\left(\mathrm{C}=\mathrm{O}\right.$ stretching) and 1602 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz})$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 11.

Compound CMD13: 5,7,3', 4', 5'-penta-O-methylgallocatechin, colorless viscous oil; $[\alpha]_{\mathrm{D}}{ }^{28}:-47.7^{\circ}\left(\mathrm{c}=0.07, \mathrm{CHCl}_{3}\right) ; \mathrm{UV} \lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 207$ (3.34) and 270 (2.59) nm; IR (neat) $v_{\max } 3453$ (O-H stretching) and 1602 (aromatic) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 12.
1.2.4.2 Investigation of the crude acetone extract from the stem of P. granatum

*No further investigation
Scheme 3 Isolation of compounds CMD7 and CMD8 from the acetone extract.

The brownish crude acetone extract of P. granatum (15.0 g) was subjected to quick column chromatography and eluted with hexane and acetone. The eluates were combined on the basis of TLC characteristic to give seven fractions (T1-T7).

Fraction T3 (1.4 g) was separated by CC with 2% methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give CMD7: 6α-hydroxystigmast-4-en-3-one (4.1 mg).

Fraction T4 (1.7 g) was purified by CC with 30% acetone/hexane to afford seven fractions (T4.1-T4.7).

Subfraction T4.5 (35.6 g) was separated by CC with 2% methanol/ $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to give CMD8: ergosterol peroxide (4.9 mg).

Compound CMD7: 6α-hydroxystigmast-4-en-3-one, colorless viscous oil; $[\alpha]_{\mathrm{D}}{ }^{28}:+12.5^{\circ}\left(\mathrm{c}=0.80, \mathrm{CHCl}_{3}\right)$; ref $[\alpha]_{\mathrm{D}}{ }^{28}:+10.7^{\circ}\left(\mathrm{c}=0.63, \mathrm{CHCl}_{3}\right)$ (Della Greca et al., 1990); UV $\lambda_{\text {max }}(\mathrm{MeOH})(\log \varepsilon): 241$ (4.73); IR (neat) $v_{\max } 3418(\mathrm{O}-\mathrm{H}$ stretching), $1670\left(\mathrm{C}=\mathrm{O}\right.$ stretching) and $1645(\mathrm{C}=\mathrm{C}$ stretching $) \mathrm{cm}^{-1}$. For ${ }^{1} \mathrm{H}$ NMR
$\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 6.

Compound CMD8: ergosterol peroxide, colorless viscous oil; $[\alpha]_{\mathrm{D}}{ }^{28}$: $11.3^{\circ}\left(\mathrm{c}=0.32, \mathrm{CHCl}_{3}\right) ; \operatorname{ref}[\alpha]_{\mathrm{D}}{ }^{28}:-12.8^{\circ}\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right)($ Daengrot 2006); IR (neat) $v_{\text {max }} 3442\left(\mathrm{O}-\mathrm{H}\right.$ stretching), $1716\left(\mathrm{C}=\mathrm{O}\right.$ stretching). For ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300\right.$ $\mathrm{MHz})$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 7.

CHAPTER 1.3
 RESULTS AND DISCUSSION

1.3.1 Structure elucidation of compounds from the stem of \boldsymbol{P}. granatum

The crude methylene chloride and acetone extracts from the stem of P. granatum were subjected to repeated quick column and column chromatography over silica gel to furnish thirteen known compounds of three triterpenes: friedelin (CMD1), 5(6)-gluten-3 α-ol (CMD2) and betulinic acid (CMD3), seven steroids: a mixture of β-sitosterol (CMD4) and stigmasterol (CMD5), stigmast-4-en-3-one (CMD6), 6α-hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), 5α -cholest-7-en-3-one (CMD9) and lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-O-methylellagic acid (CMD12), and 5,7,3', 4', 5^{\prime}-penta-Omethylgallocatechin (CMD13).

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOESY. The physical data of the known compounds were also compared with the reported values.

1.3.1.1 Compound CMD1

Compound CMD1 was obtained as a white solid, mp 245-247 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{28}:-28.2^{\circ}\left(\mathrm{c}=0.63, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands for carbonyl group at $1715 \mathrm{~cm}^{-1}$. It gave a purple vanillin-sulfuric acid test indicating a triterpene.

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 30 signals for 30 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of eight methyl ($\delta 6.8,14.7,17.9,18.7,20.3,31.8,32.1$ and 35.0), eleven methylene ($\delta 18.2,22.3,30.5,32.4,32.8,35.3,35.6,36.0,39.3,41.3$ and 41.5), four methine ($\delta 42.8,53.1,58.2$ and 59.5) and seven quaternary carbons ($\delta 28.2,30.0,37.4,38.3,39.7,42.2$ and 213.3).

The ${ }^{1} \mathrm{H}$ NMR spectral data showed characteristic of friedelin as one methyl doublet at $\delta 0.89(3 \mathrm{H}-23, d, J=6.3 \mathrm{~Hz})$ and seven methyl singlets at $\delta 0.72$, $0.87,0.95,1.00,1.01,1.05$ and 1.18 .

The position of a methyl group $3 \mathrm{H}-23$ was determined through an HMBC experiment in which the methyl protons at $\delta 0.89$ ($3 \mathrm{H}-23$) showed correlations with C-3 (δ 213.3), C-4 (δ 58.2) and C-5 ($\delta 42.2$). Thus on the basis of its spectroscopic data and comparison with the previously reported data of friedelin (Ahad et al., 1991), compound CMD1 was therefore assigned as friedelin.

Figure 2 Selected HMBC correlations of CMD1
Table $2{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD1 $\left(\mathrm{CDCl}_{3}\right)$ and friedelin ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{gathered} \text { Type of } \\ \text { C } \end{gathered}$	¢c/ppm		$\delta \mathrm{H} / \mathrm{ppm}$ (multiplicity, J/Hz)	HMBC
		CMD1	R	CMD1	
1	CH_{2}	22.3	22.3	1.64 (m), 1.69 (m)	-
2	CH_{2}	41.5	41.5	2.36 (m), 2.23 (m)	-
3	C	213.3	213.2	-	-
4	CH	58.2	58.2	2.24 (m)	-
5	C	42.2	42.2	-	-
6	CH_{2}	41.3	41.3	2.44 (m), 1.78 (m)	-
7	CH_{2}	18.2	18.2	1.52 (m), 1.39 (m)	-
8	CH	53.1	53.1	1.42 (m)	-
9	C	37.4	37.5	-	-
10	CH	59.5	59.5	1.56 (m)	-
11	CH_{2}	35.6	35.6	1.61 (m), 1.43 (m)	-
12	CH_{2}	30.5	30.5	1.46 (m), 1.34 (m)	-
13	C	39.7	39.7	-	-
14	C	38.3	38.3	-	-
15	CH_{2}	32.4	32.4	1.51 (m), 1.29 (m)	-
16	CH_{2}	36.0	36.0	1.61 (m), 1.36 (m)	-

Table 2 (Continued)

Position	$\begin{gathered} \text { Type of } \\ \text { C } \end{gathered}$	¢c /ppm		$\delta \mathrm{H} / \mathrm{ppm}$ (multiplicity, J/Hz)	HMBC
		CMD1	R	CMD1	
17	C	30.0	30.0	-	-
18	CH	42.8	42.8	1.53 (m)	-
19	CH_{2}	35.3	35.4	1.62 (m), 1.49 (m)	-
20	C	28.2	28.1	-	-
21	CH_{2}	39.3	39.3	1.48 (m), 0.93 (m)	-
22	CH_{2}	32.8	32.8	1.50 (m), 1.26 (m)	-
23	CH_{3}	6.8	6.8	0.89 (d, 6.3)	3, 4, 5
24	CH_{3}	14.7	14.7	0.72 (s)	4, 5, 6, 10
25	CH_{3}	17.9	18.0	0.87 (s)	8, 9, 10, 11
26	CH_{3}	18.7	18.7	1.01 (s)	8, 13, 14, 15
27	CH_{3}	20.3	20.3	1.05 (s)	12, 13, 14, 18
28	CH_{3}	32.1	32.1	1.18 (s)	16, 17, 18, 22
29	CH_{3}	31.8	31.8	1.00 (s)	19, 20, 21
30	CH_{3}	35.0	35.0	0.95 (s)	19, 20, 21

1.3.1.2 Compound CMD2

Compound CMD2 was obtained as a white solid, $\mathrm{mp} 210-212{ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}$ ${ }^{28}:+61.6^{\circ}\left(\mathrm{c}=0.7, \mathrm{CHCl}_{3}\right)$; The IR spectrum showed absorption band of a hydroxyl group at $3415 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 30 signals for 30 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of eight methyl ($\delta 16.2,18.4,19.6,25.4,29.0,32.0,32.4$ and 34.5), ten methylene ($\delta 18.2,23.8,27.9,30.4,32.1,33.2,34.6,35.1,36.1$ and 39.0), five methine ($\delta 43.1,47.7,49.7,76.4$ and 122.1) and seven quaternary carbons (δ $28.3,30.1,34.9,37.9,39.3,40.8$ and 141.7).

The ${ }^{1} \mathrm{H}$ NMR spectral data showed eight methyl singlets at $\delta 0.85$, $0.95,0.99,1.00,1.04,1.09,1.14$ and 1.16 , a vinyl proton at $\delta 5.63(1 \mathrm{H}, d, J=6.0 \mathrm{~Hz}$, H-6). The ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the presence of a carbon-carbon double bond at $\delta 122.1$ (C-6) and 141.7 (C-5). The broad singlet of $\mathrm{H}-3$ indicated a (β) orientation of H-3.

On the basis of HMBC the vinyl proton H-6 at $\delta 5.63$ showed correlations with C-4 ($\delta 40.8$), C-5 ($\delta 141.7$), C-7 ($\delta 23.8$), C-8 ($\delta 47.7$), and C-10 (49.7), suggesting the presence of a double bond between C-5 and C-6. Thus on the basis of its spectroscopic data and comparison with those reported in the literatures (Susidarti et al., 2006), compound CMD2 was therefore assigned as $5(6)$-gluten- 3α-ol.

Figure 3 Selected HMBC correlations of CMD2
Table $3{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD2 $\left(\mathrm{CDCl}_{3}\right)$ and $5(6)$-gluten- 3α-ol ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	$\delta \mathrm{c} / \mathrm{ppm}$		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$	HMBC${ }^{1} \mathrm{H} \rightarrow{ }^{13} \mathrm{C}$
		CMD2	R	CMD3	
1	CH_{2}	18.2	18.3	1.00 (m), 1.60 (m)	-
2	CH_{2}	27.9	28.1	1.13 (m), 1.68 (m)	-
3	CH	76.4	76.6	3.47 (br s)	-
4	C	40.8	41.0	-	-
5	C	141.7	141.9	-	-
6	CH	122.1	122.3	5.63 (d, 6.0)	$4,5,7,8,10$
7	CH_{2}	23.8	23.9	1.68 (m), 2.01 (m)	-
8	CH	47.7	47.7	1.52 (m)	-
9	C	34.9	35.1	-	-
10	CH	49.7	49.9	1.98 (m)	-
11	CH_{2}	34.6	34.8	1.33 (m), 1.52 (m)	-
12	CH_{2}	30.4	30.6	1.38 (m), 1.15 (m)	-
13	C	37.9	38.1	-	-
14	C	39.3	39.5	-	-
15	CH_{2}	32.1	32.3	1.25 (m), 1.49 (m)	-
16	CH_{2}	39.0	39.2	0.92 (m), 1.57 (m)	-

Table 3 (Continued)

Position	Type	¢c /ppm		ठн / ppm (multiplicity, J / Hz) CMD3	$\underset{{ }^{1} \mathrm{H} \rightarrow{ }^{3} \mathrm{C} \mathrm{C}}{\mathrm{HMBC}}$
		CMD2	R		
17	C	30.1	30.3	-	-
18	CH	43.1	43.3	1.58 (m)	-
19	CH_{2}	33.2	33.4	1.25 (m), 1.50 (m)	-
20	C	28.3	28.5	-	-
21	CH_{2}	35.1	35.3	1.51 (m), 1.40 (m)	-
22	CH_{2}	36.1	36.3	1.53 (m), 1.42 (m)	-
23	CH_{3}	29.0	29.2	1.04 (s)	3, 5, 24
24	CH_{3}	25.4	25.7	1.14 (s)	3, 5, 23
25	CH_{3}	16.2	16.4	0.85 (s)	8, 10, 11
26	CH_{3}	18.4	18.6	1.00 (s)	$8,13,14,15$
27	CH_{3}	19.6	19.8	1.09 (s)	13, 14, 18
28	CH_{3}	32.0	32.3	1.16 (s)	16, 17, 18, 22
29	CH_{3}	34.5	34.7	0.95 (s)	19, 21, 20, 30
30	CH_{3}	32.4	32.6	0.99 (s)	19, 21, 20, 29

1.3.1.3 Compound CMD3

Compound CMD3 was obtained as a white solid, mp. 280-282 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{28}:+18.7^{\circ}\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)$. It gave a purple vanillin-sulfuric acid test. The IR spectrum showed absorption band of a hydroxyl group at $3415 \mathrm{~cm}^{-1}$ and a carbonyl group at $1686 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 30 signals for 30 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of six methyl ($\delta 14.5,15.2,15.6,15.9,19.1$, and 27.6), eleven methylene ($\delta 18.2,20.8,25.4,26.9,29.6,30.5,32.2,34.2,37.1,38.7$ and 109.3), six methine ($\delta 38.2,46.9,49.1,50.5,55.3$ and 78.7) and seven quaternary carbons (δ $37.1,38.7,40.6,42.3,56.1,150.7$ and 179.1).

The ${ }^{1} \mathrm{H}$ NMR spectral data showed characteristic of lupane triterpenes as one vinylic methyl at $\delta 1.69$, two protons of an isopropenyl moiety at $\delta 4.61(\mathrm{br} \mathrm{s})$ and $4.74(\mathrm{br} s)$ and a typical lupine $\beta \mathrm{H}-19$ proton at $\delta 3.01(m)$. An oxymethine proton was shown at $\delta 3.19(d d, J=10.8,5.4 \mathrm{~Hz})$. The doublet of doublet splitting pattern together with a large coupling constant of H-3 with $J_{a x-a x}=10.8 \mathrm{~Hz}$ and $J_{a x-e q}=5.4 \mathrm{~Hz}$ indicated an axial (α) orientation of H-3. The ${ }^{13} \mathrm{C}$ NMR spectral data displayed a signal of carboxyl carbon at $\delta 179.1$, thus suggesting a carboxylic functionality at C 28. The location of the carboxyl group was confirmed by HMBC experiment in which the methylene proton $2 \mathrm{H}-22$ ($\delta 1.41$ and 1.93) showed correlations with $\mathrm{C}-17(\delta 56.1)$, $\mathrm{C}-18$ ($\delta 49.1$) and C-28 (179.1). Thus on the basis of its spectroscopic data and comparison with those reported in the literatures (Macias et al., 1994 and Thongdeeying, 2005), compound CMD3 was therefore assigned as betulinic acid.

Figure 4 Selected HMBC correlations of CMD3
Table $4{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD3 $\left(\mathrm{CDCl}_{3}\right)$ and betulinic acid $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	$\begin{aligned} & \text { Type } \\ & \text { of C } \end{aligned}$	$\delta \mathrm{c} / \mathrm{ppm}$		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$		${ }^{\mathrm{HMBC}} \mathrm{H} \rightarrow{ }^{3} \mathrm{C}$
		CMD3	R	CMD3	R	
1	CH_{2}	38.7	38.5	0.88 (m), 1.65 (m)	0.95 (m), 1.70 (m)	-
2	CH_{2}	26.9	28.2	1.57 (m), 1.61 (m)	1.57 (m), 1.62 (m)	-
3	CH	78.7	78.1	3.19 (dd, 10.8, 5.4)	3.19 (dd, 10.8, 5.4)	1,23, 24
4	C	38.7	39.4	-	-	-
5	CH	55.3	55.9	0.69 (m)	0.71 (m)	4, 6, 7, 9
6	CH_{2}	18.2	18.7	1.36 (m), 1.51 (m)	1.45 (m), 1.55 (m)	-
7	CH_{2}	34.2	34.7	1.38 (m)	1.42 (m)	-
8	C	40.6	41.0	-	-	-
9	CH	50.5	50.9	1.26 (m)	1.33 (m)	-
10	C	37.1	37.5	-	-	-
11	CH_{2}	20.8	21.1	1.23 (m), 1.43 (m)	1.25 (m), 1.45 (m)	-
12	CH_{2}	25.4	26.0	1.69 (m)	1.07 (m), 1.73 (m)	-
13	CH	38.2	39.2	2.22 (m)	2.30 (m)	-
14	C	42.3	42.8	-	-	-
15	CH_{2}	29.6	30.2	1.51 (m), 1.51 (m)	1.18 (m), 1.53 (m)	-
16	CH_{2}	32.2	32.8	1.40 (m), 2.25 (m)	1.43 (m), 2.23 (m)	-

Table 4 (Continued)

Position	Type of C	$\delta \mathrm{c} / \mathrm{ppm}$		$\delta \mathrm{H} / \mathrm{ppm}$ (multiplicity, J/Hz)		HMBC ${ }^{1} \mathrm{H} \rightarrow{ }^{3} \mathrm{C}$
			CMD3	R	CMD 3	
17	C	56.1	56.6	-	-	-
18	CH	49.1	49.7	$1.58(m)$	$1.63(m)$	-
19	CH	46.9	47.7	$3.01(m)$	$3.02(m)$	$18,20,21$,
						29,30
20	C	150.7	151.4	-	-	-
21	CH_{2}	30.5	31.4	$1.42(m), 1.91(m)$	$1.40(m), 1.93(m)$	-
22	CH_{2}	37.1	37.4	$1.41(m), 1.93(m)$	$1.43(m), 1.91(m)$	$17,18,28$
23	CH_{3}	27.6	28.5	$0.97(s)$	$0.95(s)$	$3,4,5,24$
24	CH_{3}	15.2	16.2	$0.75(s)$	$0.75(s)$	$3,4,5,23$
25	CH_{3}	15.9	16.3	$0.82(s)$	$0.86(s)$	$1,5,9,10$
26	CH_{3}	15.6	16.2	$0.94(s)$	$0.97(s)$	$7,8,9,14$
27	CH_{3}	14.5	14.8	$0.98(s)$	$1.01(s)$	$8,13,14,15$
28	C^{2}	179.1	179.0	-	-	-
29	CH_{2}	109.3	110.0	$4.61(b r s)$	$4.59(d d, 2.2,1.0)$	19,30
				$4.74(b r s)$	$4.71(d, 2.2)$	
30	CH_{3}	19.1	19.4	$1.69(s)$	$1.69(d, 1.0)$	$19,20,29$

1.3.1.4 Compounds CMD4 and CMD5

The mixture of CMD4 and CMD5 was isolated as a white solid. Its IR spectrum showed absorption bands at 3425 (hydroxyl) and $1642 \mathrm{~cm}^{-1}$ (double bond). The ${ }^{1} \mathrm{H}$ NMR spectral data contained an oxymethine proton at δ 3.57-3.47 (m), three olefinic protons at $\delta 5.36(d, J=5.1 \mathrm{~Hz}), 5.16(d d, J=15.1,8.4 \mathrm{~Hz})$ and $5.01(d d, J=$ $15.1,8.4 \mathrm{~Hz}$). The ${ }^{1} \mathrm{H}$ NMR (Cheenpracha, 2004) data was corresponded to a previous reported data of β-sitosterol and stigmasterol. Thus, this mixture was identified as β sitosterol (CMD4) and stigmasterol (CMD5).

1.3.1.5 Compound CMD6

Compound CMD6 was isolated as colorless viscous oil; $[\alpha]_{\mathrm{D}}{ }^{28}:+67.7^{\circ}$ ($\mathrm{c}=0.47, \mathrm{CHCl}_{3}$). Its IR spectrum showed absorption bands for α, β-unsaturated carbonyl group at $1674 \mathrm{~cm}^{-1}$ and double bond at $1616 \mathrm{~cm}^{-1}$. The UV absorption was shown at 241 nm .

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 29 signals for 29 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of six methyl (11.9, 12.0, 17.4, 18.7, 19.0 and 19.8), eleven methylene (21.0, 23.1, 24.2, 26.1, 28.2, 32.1, 32.9, 33.9, 34.0, 35.7 and 39.6), eight methine $(29.2,35.6,36.1,45.8,53.8,55.9,56.1$ and 123.7) and four quaternary carbons (38.6, 42.4, 171.6 and 199.6).

The ${ }^{1} \mathrm{H}$ NMR spectral data displayed a downfield vinyl proton at $\delta 5.72$ (H-4). The ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the presence of a carbon-carbon double bond at $\delta 123.7$ (C-4) and $171.6(\mathrm{C}-5)$ and the downfield chemical shift of C-5 (δ 171.6) also indicated the presence of the conjugate carbonyl function. On the basis of HMBC the vinyl proton ($\delta 5.72$) showed correlations with C-2 (δ 33.9), C-3 ($\delta 199.6$), C-6 ($\delta 32.9$) and C-10 ($\delta 38.6$) suggesting the presence of a double bond between C-4 and C-5. On the basis of its spectroscopic data and comparison with previously reported data (Della et al., 1990), Compound CMD6 was identified as stigmast-4-en3 -one.

Figure 5 Selected HMBC correlations of CMD6
Table $5{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD6 $\left(\mathrm{CDCl}_{3}\right)$ and stigmast-4-en-3-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	¢c /ppm		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$		$\begin{array}{r} \mathrm{HMBC} \\ \mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C} \end{array}$
		CMD6	R	CMD6	R	
1	CH_{2}	35.7	35.7	1.54 (m), 1.67 (m)	-	-
2	CH_{2}	33.9	33.9	2.28 (m), 2.50 (m)	-	-
3	C	199.6	198.9	-	-	-
4	CH	123.7	123.6	5.72 (br s)	5.74 (d, 2.2)	2, 3, 6, 10
5	C	171.6	171.0	-	-	-
6	CH_{2}	32.9	32.9	2.25 (m), 2.40 (m)	-	-
7	CH_{2}	32.1	32.1	1.10 (m), 1.85 (m)	-	-
8	CH	35.6	35.7	1.71 (m)	-	-
9	CH	53.8	53.8	0.92 (m)	-	-
10	C	38.6	38.6	-	-	-
11	CH_{2}	21.0	21.0	1.40 (m), 1.50 (m)	-	-
12	CH_{2}	39.6	39.5	1.15 (m), 2.04 (m)	-	-
13	C	42.4	42.4	-	-	-
14	CH	55.9	55.9	1.00 (m)	-	-
15	CH_{2}	24.2	24.1	1.23 (m), 1.29 (m)	-	-
16	CH_{2}	28.2	28.1	1.27 (m), 1.32 (m)	-	-

Table 5 (Continued)

Position	Type of C	¢c /ppm		$\delta_{\mathrm{H}} / \mathrm{ppm}$(multiplicity, J / Hz)		$\begin{gathered} \mathrm{HMBC} \\ \mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C} \end{gathered}$
		CMD6	R	CMD6	R	
17	CH	56.1	56.1	1.11 (m)	-	-
18	CH_{3}	12.0	12.0	0.71 (s)	0.72 (s)	12, 14, 17
19	CH_{3}	17.4	17.4	1.18 (s)	1.19 (s)	1, 5, 9, 10
20	CH	36.1	36.1	2.01 (m)	-	-
21	CH_{3}	18.7	18.7	0.92 (d, 6.3)	0.93 (d, 6.6)	17, 20, 22
22	CH_{2}	34.0	34.0	2.39 (m)	-	-
23	CH_{2}	26.1	26.0	1.17 (m)	-	-
24	CH	45.8	45.8	0.93 (m)	-	-
25	CH	29.2	29.1	1.26 (m)	-	-
26	CH_{3}	19.8	19.8	0.85 (d, 6.9)	0.84 (d, 6.8)	24, 25, 27
27	CH_{3}	19.0	19.2	0.84 (d, 6.6)	0.82 (d, 6.8.)	24, 25, 26
28	CH_{2}	23.1	23.1	1.29 (m)	-	-
29	CH_{3}	11.9	11.4	0.83 (d, 6.6)	0.85 (d, 7.2)	24, 28

1.3.1.6 Compound CMD7

Compound CMD7 was isolated as colorless viscous oil; $[\alpha]_{\mathrm{D}}{ }^{28}:+12.5^{\circ}$ ($\mathrm{c}=0.8, \mathrm{CHCl}_{3}$). The absorption bands for IR and UV spectral data were similar to compound CMD6 with additional IR hydroxyl absorption at $3446 \mathrm{~cm}^{-1}$.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compounds CMD6 and CMD7 showed structural similarity, except for additional signal for an oxymethine proton at $\delta 4.33$ (H-6) in CMD7. The multiplicity of the oxymethine proton signal as a doublet of doublet of doublet $\left(J_{a x-a x}=17.7, J_{a x-e q}=5.7, J_{\text {allylic }}=1.2 \mathrm{~Hz}\right)$ from coupling with $2 \mathrm{H}-7$ and $\mathrm{H}-4$, indicated that $\mathrm{H}-6$ was situated in an axial (β) position. The location of a hydroxyl group at C-6 was determined through an HMBC experiment in which the oxymethine proton signal at $\delta 4.33(\mathrm{H}-6)$ showed long-range correlations with $\mathrm{C}-3$ (δ 198.5), C-4 ($\delta 118.7$), C5 ($\delta 170.6$), C-7 ($\delta 40.5$), C-8 ($\delta 33.2$) and C-10 ($\delta 38.0$). Thus on the basis of its spectroscopic data and comparison with previously reported data (Della Greca et al., 1990), compound CMD7 was assigned as $6 \alpha-$ hydroxystigmast-4-en-3-one.

Figure 6 Selected HMBC correlations of CMD7
Table $6 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD7 $\left(\mathrm{CDCl}_{3}\right)$ and 6α-hydroxystigmast-4-en-3-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	¢c /ppm		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$	$\underset{13}{\mathrm{HMBC}}$
		CMD7	R	CMD7	
1	CH_{2}	35.3	36.3	1.74 (m), 1.79 (m)	-
2	CH_{2}	32.9	34.1	2.32 (m), 2.38 (m)	-
3	C	198.5	202.9	-	-
4	CH	118.7	119.4	6.17 (d, 1.2)	2, 3, 6, 10
5	C	170.6	171.0	-	-
6	CH	67.7	68.7	4.33 (ddd, 17.7, 5.7, 1.2)	4, 5, 7, 8, 10
7	CH_{2}	40.5	39.4	1.08 (m), 2.15 (m)	-
8	CH	33.2	33.8	1.63 (m)	-
9	CH	52.8	53.7	0.95 (m)	-
10	C	38.0	39.3	-	-
11	CH_{2}	20.0	21.0	1.51 (m), 1.55 (m)	-
12	CH_{2}	38.5	39.4	2.02 (m), 2.06 (m)	-
13	C	41.5	41.5	-	-
14	CH	54.7	55.5	1.12 (m)	-
15	CH_{2}	23.2	24.4	1.12 (m), 1.64 (m)	-
16	CH_{2}	28.7	28.1	1.28 (m), 1.71 (m)	-

Table 6 (Continued)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C } \end{aligned}$	¢c /ppm		$\begin{gathered} \delta \mathrm{H} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$	HMBC
		CMD7	R	CMD7	
17	CH	55.0	55.9	1.16 (m)	-
18	CH_{3}	10.9	11.9	0.71 (s)	12, 14, 17
19	CH_{3}	17.3	17.9	1.18 (s)	1, 5, 9, 10
20	CH	35.1	36.1	2.05 (m)	-
21	CH_{3}	17.7	18.7	0.92 (d, 6.3)	17, 20, 22
22	CH_{2}	32.8	33.9	2.48 (m)	-
23	CH_{2}	27.1	26.1	0.88 (m)	-
24	CH	44.8	45.8	0.97 (m)	-
25	CH	28.2	29.2	1.62 (m)	
26	CH_{3}	18.8	19.7	0.84 (d, 6.9)	24, 25, 27
27	CH_{3}	18.0	19.0	0.81 (d, 6.6)	24, 25, 26
28	CH_{2}	22.1	23.1	1.18 (m)	-
29	CH_{3}	11.0	11.9	0.85 (t, 6.9)	24, 28

1.3.1.7 Compound CMD8

Compound CMD8 was isolated as colorless viscous oil; $[\alpha]{ }^{28}$: $11.3^{\circ}\left(\mathrm{c}=0.33, \mathrm{CHCl}_{3}\right)$. Its IR spectrum showed absorption bands for a hydroxyl group at $3414 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 28 signals for 28 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of six methyl ($\delta 12.9,17.6,18.2,19.6,19.9$ and 20.9), seven methylene ($\delta 20.6,23.4,28.6,30.1,34.7,37.0$ and 39.4), eleven methine ($\delta 33.1$, $39.7,42.8,51.1,51.7,56.2,66.5,130.8,132.3,135.2$ and 135.4) and four quaternary carbons ($\delta 36.9,44.6,79.4$ and 82.2). Two quaternary carbon signals at $\delta 82.2$ and δ 79.4 were, respectively, assignable to $\mathrm{C}-5$ and $\mathrm{C}-8$ bearing a $5 \alpha, 8 \alpha$-peroxide bonds.

The ${ }^{1} \mathrm{H}$ NMR spectral data showed characteristic of ergostane-type sterol as four methyl doublets at $\delta 0.82(3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}-26), 0.83(3 \mathrm{H}, J=6.6 \mathrm{~Hz}$, Me-27), $0.91(3 \mathrm{H}, J=6.9 \mathrm{~Hz}, \mathrm{Me}-28)$ and $1.01(3 \mathrm{H}, J=6.6 \mathrm{~Hz}, \mathrm{Me}-21)$ and two methyl singlets at $\delta 0.82$ ($\mathrm{Me}-18$) and 0.88 ($\mathrm{Me}-19$). Two parts of olefinic proton signals at $\delta 6.27(\mathrm{H}-6)$ and $6.50(\mathrm{H}-7)$ (each $1 \mathrm{H}, d, J=8.7 \mathrm{~Hz}$) and $5.14(\mathrm{H}-22)$ and $5.23(\mathrm{H}-23)$ (each $1 \mathrm{H}, d d, J=15.3,7.8 \mathrm{~Hz}$) were attributable to Δ^{6} and Δ^{22} double bonds, respectively. The oxymethine proton signal at $\delta 3.97(\mathrm{H}-3, m)$ was assigned as $\mathrm{H}-3 \alpha$ due to the absence of NOESY cross peak with $3 \mathrm{H}-19(\delta 0.88)$.

The location of the peroxide bond was confirmed by HMBC experiment in which the olefinic proton H-6 ($\delta 6.27$) showed correlations with C-4 (δ 39.4), C-5 ($\delta 82.2$) and C-8 ($\delta 79.4$). The olefinic proton H-7 ($\delta 6.50$) showed longrange correlations with C-5 ($\delta 82.2$), C-8 ($\delta 79.4$), C-9 ($\delta 51.1$) and C-14 ($\delta 51.7$). Thus on the basis of its spectroscopic data and comparison with those reported in the
literatures (Yue et al., 2001, Rosecke et al., 2000 and Daengrot 2006), compound CMD8 was, therefore, assigned as ergosterol peroxide.

Figure 7 Selected HMBC correlations of CMD8
Table $7{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD8 $\left(\mathrm{CDCl}_{3}\right)$ and ergosterol peroxide ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	¢c /ppm		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$		HMBC (CMD) $\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}$
		CMD8	R	CMD8	R	
1	CH_{2}	30.1	30.2	1.56 (m), 1.85 (m)	-	-
2	CH_{2}	34.7	34.8	1.71 (m), 1.98 (m)	-	-
3	CH	66.5	66.5	3.97 (m)	3.97 (m)	2
4	CH_{2}	39.4	39.4	1.25 (m), 1.96 (m)	-	-
5	C	82.2	82.2	-	-	-
6	CH	135.4	135.2	6.27 (d, 8.7)	$6.24(d, 8.7)$	4, 5, 8
7	CH	130.8	130.7	6.50 (d, 8.7)	$6.51(d, 8.7)$	5, 8, 9, 14
8	C	79.4	79.4	-	-	-
9	CH	51.1	51.3	1.51 (m)	-	-
10	C	36.9	37.0	-	-	-
11	CH_{2}	20.6	20.7	1.42 (m), 1.61 (m)	-	-
12	CH_{2}	37.0	37.0	1.91 (m), 2.13 (m)	-	-
13	C	44.6	44.6	-	-	-

Table 7 (Continued)

1.3.1.8 Compound CMD9

Compound CMD9 was isolated as a white solid. $\mathrm{mp} .144-146{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{28}:+12.1^{\circ}\left(\mathrm{c}=0.05, \mathrm{CHCl}_{3}\right)$. Its IR spectrum showed absorption bands for carbonyl group at $1708 \mathrm{~cm}^{-1}$ and double bond at $1630 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 27 signals for 27 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of five methyl ($\delta 11.9,12.4,18.9,22.6$ and 22.8), eleven methylene ($\delta 21.7,23.0,24.0,27.9,30.1,36.1,38.1,38.8,39.5(\mathrm{x} 2)$ and 44.2), seven methine ($\delta 28.0,36.5,42.9,48.9,55.0,56.2$ and 117.0) and four quaternary carbons (δ 34.4, 43.4, 139.6 and 212.0).

The ${ }^{1} \mathrm{H}$ NMR spectral data displayed a downfield vinyl proton at $\delta 5.19$ (H-7). The ${ }^{13} \mathrm{C}$ NMR spectrum confirmed the presence of a carbon-carbon double bond at $\delta 117.0$ (C-7) and 139.6 (C-8). On the basis of HMBC the vinyl proton H-7 (δ 5.19) showed correlations with C-5 ($\delta 42.9$), C-6 ($\delta 30.1$), C-9 ($\delta 48.9$) and C-14 (δ 55.0) suggesting the presence of a double bond between $\mathrm{C}-7$ and $\mathrm{C}-8$. On the basis of its spectroscopic data and comparison with previously reported data (Dolle et al., 1991), Compound CMD9 was identified as 5α-cholest-7-en-3-one.

Figure 8 Selected HMBC correlations of CMD9
Table $8{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds $\mathbf{C M D} 9\left(\mathrm{CDCl}_{3}\right)$ and 5α-cholest-7-en-3-one ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	$\delta \mathrm{c} / \mathrm{ppm}$		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$	$\begin{gathered} \mathrm{HMBC} \\ \mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C} \end{gathered}$
		CMD9	R	CMD9	
1	CH_{2}	38.8	38.2	2.28 (m), 2.48 (m)	-
2	CH_{2}	39.5	39.6	1.22 (m), 2.22 (m)	-
3	C	212.0	211.8	-	-
4	CH_{2}	44.2	44.3	2.34 (m), 2.90 (m)	-
5	CH	42.9	43.0	1.83 (m)	-
6	CH_{2}	30.1	30.2	1.03 (m), 1.72 (m)	-
7	CH	117.0	117.0	5.19 (br s)	5, 6, 9, 14
8	C	139.6	139.6	-	-
9	CH	48.9	49.0	1.72 (m)	-
10	C	34.4	34.5	-	-
11	CH_{2}	21.7	21.8	1.57 (m), 2.10 (m)	-
12	CH_{2}	38.1	38.9	1.28 (m), 1.35 (m)	-
13	C	43.4	43.5	-	-
14	CH	55.0	55.1	1.82 (m)	-
15	CH_{2}	23.0	23.0	1.38 (m), 1.52 (m)	-
16	CH_{2}	27.9	28.0	1.23 (m), 1.91 (m)	-

Table 8 (Continued)

Position	Type of C	$\delta c / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J/Hz)	HMBC $\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}$
		CMD9	R	CMD 9	
17	CH	56.2	56.3	$1.22(m)$	-
18	CH_{3}	11.9	11.9	$0.56(s)$	$12,13,14,17$
19	CH_{3}	12.4	12.5	$1.02(s)$	$1,5,9,10$
20	CH^{2}	36.5	36.2	$1.10(m)$	-
21	CH_{3}	18.9	18.9	$0.92(d, 6.6)$	$17,20,22$
22	CH_{2}	36.1	36.2	$1.38(m)$	-
23	CH_{2}	24.0	24.0	$1.17(m)$	-
24	CH_{2}	39.5	39.6	$2.10(m)$	-
25	CH_{2}	28.0	28.0	$1.90(m)$	-
26	CH_{3}	22.6	22.6	$0.87(d, 6.6)$	$24,25,27$
27	CH_{3}	22.8	22.8	$0.87(d, 6.6)$	$24,25,26$

1.3.1.9 Compound CMD10

Compound CMD10 was obtained as a white solid. mp. $149-150{ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{28}:+7.0^{\circ}\left(\mathrm{c}=0.04, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption band of a hydroxyl group at $3424 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 28 signals for 28 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of six methyl ($\delta 11.9,14.2,15.2,18.9,22.6$ and 22.8), ten methylene ($\delta 21.4,22.9,23.9,26.7,28.0,31.0,36.2,37.0,39.5$ and 39.6), nine methine ($\delta 28.0,36.2,40.3,46.7,49.7,55.0,56.2,76.3$ and 117.5) and three quaternary carbons ($\delta 34.9,43.4$ and 139.2).

The ${ }^{1} \mathrm{H}$ NMR spectral data showed two methyl singlets at $\delta 0.52$ and 0.83 , four methyl doublets at $\delta 0.86,0.87,0.92$ and 0.99 and a vinyl proton at $\delta 5.18$ $(1 \mathrm{H}, d d, J=5.18,1.5 \mathrm{~Hz}, \mathrm{H}-7)$. The ${ }^{13} \mathrm{C}$ NMR spectral data confirmed the presence of a carbon-carbon double bond at $\delta 117.5$ (C-7) and 139.2 (C-8). The doublet of doublet splitting pattern of $\mathrm{H}-3$ at $\delta 3.12(1 \mathrm{H}, d d, J=10.5,4.5 \mathrm{~Hz})$ indicated its (α) orientation.

On the basis of HMBC the vinyl proton H-7 (δ 5.18) showed correlations with C-5 ($\delta 46.7$), C-6 ($\delta 26.7$), C-9 ($\delta 49.7$) and C-14 (δ 55.0), suggesting the presence of a double bond between C-7 and C-8. Thus on the basis of its spectroscopic data and comparison with those reported in the literatures (Farines et al., 1988), compound CMD10 was therefore assigned as lophenol.

Figure 9 Selected HMBC correlations of CMD10

Table $9{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD10 $\left(\mathrm{CDCl}_{3}\right)$ and lophenol ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	ठc /ppm	$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, J/Hz) } \end{gathered}$		$\begin{gathered} \mathrm{HMBC} \\ \mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C} \end{gathered}$
		CMD10	CMD10	R	
1	CH_{2}	37.0	1.83 (m), 1.13 (m)	-	-
2	CH_{2}	31.0	1.80 (m), 1.45 (m)	-	-
3	CH	76.3	3.12 (dd, 10.5, 4.5)	3.12 (dd, 10.6, 4.7)	28
4	CH	40.3	1.33 (m)	-	-
5	CH	46.7	1.12 (m)	-	-
6	CH_{2}	26.7	1.60 (m), 2.10 (m)	5.18 (d, 5.2)	-
7	CH	117.5	5.18 (dd, 5.8, 1.5)	-	5, 6, 9, 14
8	C	139.2	-	-	-
9	CH	49.7	1.62 (m)	-	-
10	C	34.9	-	-	-
11	CH_{2}	22.9	1.53 (m), 1.32 (m)	-	-
12	CH_{2}	39.5	1.12 (m), 1.35 (m)	-	-
13	C	43.4	-	-	-
14	CH	55.0	1.81 (m)	-	-
15	CH_{2}	23.9	1.15 (m), 1.52 (m)	-	-
16	CH_{2}	28.0	1.28 (m), 1.91 (m)	-	-

Table 9 (Continued)

Position	Type of C	ठc /ppm	$\delta_{\mathrm{H}} / \mathrm{ppm}$(multiplicity, J / Hz)		HMBC$\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}$
		CMD10	CMD10	R	
17	CH	56.2	1.20 (m)	-	-
18	CH_{3}	11.9	0.52 (s)	0.53 (s)	12, 13, 14, 17
19	CH_{3}	14.2	0.83 (s)	0.83 (s)	1, 5, 9, 10
20	CH	36.2	1.23 (m)	-	-
21	CH_{3}	18.9	0.92 (d, 6.3)	0.99 (d, 6.3)	17, 20, 22
22	CH_{2}	36.2	1.34 (m)	-	-
23	CH_{2}	39.6	1.21 (m)	-	-
24	CH_{2}	21.4	1.55 (m)	-	-
25	CH	28.0	1.85 (m)	-	-
26	CH_{3}	22.6	$0.87(d, 6.6)$	0.87 (d, 6.5)	24, 25, 27
27	CH_{3}	22.8	0.86 (d, 6.6)	0.86 (d, 6.5)	24, 25, 26
28	CH_{3}	15.2	0.99 (d, 6.3)	0.92 (d, 5.8)	3, 4, 5

1.3.1.10 Compound CMD11

Compound CMD11 was obtained as a colorless viscous oil, $[\alpha]_{D}{ }^{28}$:$122^{\circ}\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)$ It exhibited UV absorption bands at 208, 248 and 323 nm for benzene chromophore. The IR spectrum showed absorption bands at 3290 and 1669 cm^{-1} indicating the presence of hydroxyl and chelated carbonyl groups, respectively.

The ${ }^{13} \mathrm{C}$ NMR spectral data displayed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of two methyl ($\delta 18.1$ and 20.9), one methylene ($\delta 31.9$), three methine (δ $75.4,115.7$ and 137.4) and five quaternary carbons ($\delta 108.1,134.9,137.0,160.6$ and 170.3).

The ${ }^{1} \mathrm{H}$ NMR spectral data consisted of signals for two ortho-coupled aromatic protons of a 1,2,3,4-tetrasubstituted benzene at $\delta 6.82(1 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-$ 7) and $7.29(1 \mathrm{H}, d, J=8.4 \mathrm{~Hz}, \mathrm{H}-6)$, one oxymethine proton at $\delta 4.68(1 \mathrm{H}, d d q, J=$ $16.8,11.4,3.6 \mathrm{~Hz}, \mathrm{H}-3)$, one methylene group at $\delta 2.72(1 \mathrm{H}, d d, J=16.8,11.4 \mathrm{~Hz}, \mathrm{H}-$ 4) and $2.95(1 \mathrm{H}, d d, J=16.8,3.6 \mathrm{~Hz}, \mathrm{H}-4)$ and two methyl groups at $\delta 1.55(3 \mathrm{H}, d, J$ $=6.0 \mathrm{~Hz}, \mathrm{Me}-10)$ and $2.20(3 \mathrm{H}, s, \mathrm{Me}-9)$

The locations of the two methyl groups (Me-9 and Me-10) at C-3 and C-5, respectively were deduced from HMBC correlations of Me-9 ($\delta 1.55$) with C-3 ($\delta 75.4$) and C-4 ($\delta 31.9$) and of Me-10 ($\delta 2.20$) with C-5 ($\delta 134.9$), C-4a ($\delta 137.0$) and C-6 ($\delta 137.4$). On the basis of the above results and comparison with the reported data of 5-methylmellein [Cambie et al., 1991], compound CMD11 was therefore assigned as 5-methylmellein.

Figure 10 Selected HMBC correlations of CMD11
Table $10 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD11 $\left(\mathrm{CDCl}_{3}\right)$ and 5-methylmellein ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C } \end{aligned}$	$\delta_{\mathrm{c}} / \mathrm{ppm}$		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, J/Hz) } \end{gathered}$		$\begin{aligned} & \mathrm{HMBC} \\ & \mathrm{H}^{1} \xrightarrow{13} \mathrm{C} \end{aligned}$
		CMD11	R	CMD11	R	
1	C	170.3	170.4	-	-	-
2	-	-	-	-	-	-
3	CH	75.4	75.4	4.68 (ddq, 16.8,	4.69 (ddq, 16.6,	1, 4a
				11.4, 3.6)	11.4, 3.4)	
4	CH_{2}	31.9	31.9	2.72 (dd,	2.72 (dd,	3, 4a, 5, 8a
				16.8, 11.4),	11.6, 16.6),	
				2.95 (dd,	2.95 (dd,	
				16.8, 3.6)	16.6, 3.4)	
4a	C	137.0	137.1	-	-	-
5	C	134.9	134.9	-	-	-
6	CH	137.4	137.9	7.29 (d, 8.4)	7.29 (d, 8.5)	4a, 8, 10
7	CH	115.7	115.7	6.82 (d, 8.4)	6.82 (d, 8.5)	5, 8, 8a
8	C	160.6	160.5	-	-	-
8 a	C	108.1	108.1	-	-	-
9	CH_{3}	20.9	20.9	1.55 (d, 6.0)	1.55 (d, 6.3)	3, 4
10	CH_{3}	18.1	16.1	2.20 (s)	2.20 (s)	5, 4a, 6

1.3.1.11 Compound CMD12

Compound CMD12 was obtained as a white solid. It exhibited UV absorption bands at 248 and 371 nm for benzene chromophore. The IR spectrum showed absorption bands at 3400 and $1744 \mathrm{~cm}^{-1}$ indicating the presence of hydroxyl and carbonyl groups, respectively.

The ${ }^{13} \mathrm{C}$ NMR spectral data displayed 17 signals for 17 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of three methyl ($\delta 56.8,61.5$ and 61.8), two aromatic methine ($\delta 107.7$ and 112.8) and 12 quaternary carbons ($\delta 111.7,112.0,112.7,114.0,140.7,141.0,141.4$, $141.8,152.8,154.0,158.7$ and 159.1).

The ${ }^{1} \mathrm{H}$ NMR spectral data consisted of signals for two singlets aromatic protons at $\delta 7.68(1 \mathrm{H}, s, \mathrm{H}-5)$ and $7.64\left(1 \mathrm{H}, s, \mathrm{H}-5^{\prime}\right)$, three methoxyl groups at $\delta 4.17(3 \mathrm{H}, \mathrm{s}, 3-\mathrm{OMe}), 4.04(3 \mathrm{H}, \mathrm{s}, 4-\mathrm{OMe})$ and $4.19\left(3 \mathrm{H}, \mathrm{s}, 3^{\prime}-\mathrm{OMe}\right)$.

The locations of the two aromatic protons ($\mathrm{H}-5$ and $\mathrm{H}-5^{\prime}$) were deduced from HMBC correlations of H-5 ($\delta 7.68$) with C-3 ($\delta 141.8$), C-4 ($\delta 154.0$), C-6 ($\delta 114.0$) and C-7 ($\delta 159.1$) and of $\mathrm{H}-5^{\prime}(\delta 7.64)$ with C-1' ($\delta 111.7$), C-3' (δ 140.7), C-4' ($\delta 152.8$) and $\mathrm{C}-7^{\prime}(\delta 158.7)$. On the basis of the above results and comparison with the reported data of 3,4,3'-tri-O-methylellagic acid [Bai et al., 2008], compound CMD12 was assigned as 3,4,3'-tri-O-methylellagic acid.

Figure 11 Selected HMBC correlations of CMD12
Table $11{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds CMD12 $\left(\mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}\right)$ and 3,4,3'-tri-O-methylellagic acid ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C } \end{aligned}$	$\delta \mathrm{c} / \mathrm{ppm}$		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$		$\underset{\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}}{\mathrm{HMBC}}$
		CMD12	R	CMD12	R	
1	C	112.0	107.4	-	-	-
2	C	141.4	141.2	-	-	-
3	C	141.8	141.1	-	-	-
4	C	154.0	153.7	-	-	-
5	CH	107.7	107.4	7.68 (s)	7.51 (s)	3, 4, 6, 7
6	C	114.0	113.5	-	-	-
7	C	159.1	158.6	-	-	-
1^{\prime}	C	111.7	107.4	-	-	-
2^{\prime}	C	141.0	140.6	-	-	-
3^{\prime}	C	140.7	140.3	-	-	-
4^{\prime}	C	152.8	153.2	-	-	-
5^{\prime}	CH	112.8	111.8	7.64 (s)	7.60 (s)	$1^{\prime}, 3^{\prime}, 4^{\prime}, 7^{\prime}$
$6{ }^{\prime}$	C	112.7	112.5	-	-	-
$7{ }^{\prime}$	C	158.7	153.7	-	-	-
3-OMe	CH_{3}	61.8	61.3	4.17 (s)	4.03 (s)	3
4-OMe	CH_{3}	56.8	56.7	4.04 (s)	3.99 (s)	4
3'-OMe	CH_{3}	61.5	60.9	4.19 (s)	4.05 (s)	3'

1.3.1.12 Compound CMD13

Compound CMD13 was obtained as a colorless viscous oil, $[\alpha]_{\mathrm{D}}{ }^{28}$: $47.7^{\circ}\left(\mathrm{c}=0.07, \mathrm{CHCl}_{3}\right)$ The IR spectrum showed absorption band for a hydroxyl at $3453 \mathrm{~cm}^{-1}$. The UV spectrum showed absorption maxima at 207 and 270 nm .

The ${ }^{13} \mathrm{C}$ NMR spectral data displayed 20 signals for 20 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four aromatic methine carbons ($\delta 92.0,93.0$ and 104.0 (x2)), two oxymethine carbons ($\delta 68.4$ and 82.2), a methylene carbon ($\delta 22.8$), eight quaternary aromatic carbons ($\delta 101.1,133.4,138.2,153.6$ (x2), 155.2, 158.8 and 159.8) and five methoxyl carbons ($\delta 55.4,55.5,56.2$ and 60.8 (x2)).

The ${ }^{1} \mathrm{H}$ NMR spectral data suggested the presence of four aromatic protons ($\delta 6.12,6.15$ and 6.68 (x2)), two methine protons ($\delta 4.08$ and 4.63), two methylene protons ($\delta 2.60$ and 3.10) and five methoxyl groups at $\delta 3.76,3.81,3.86$ (x2) and 3.88 (each $3 \mathrm{H}, s, \mathrm{OCH}_{3}$). Two doublet resonances at $\delta 6.12$ and 6.15 with the coupling constant of 2.1 Hz corresponded to the resonances of meta protons H-6 and $\mathrm{H}-8$, respectively. A singlet at $\delta 6.68$ were assigned for the resonances of $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-$ 6^{\prime}. The spectra further showed the resonances of $\mathrm{H}-2(\delta 4.63, d, J=8.4 \mathrm{~Hz}), \mathrm{H}-3(\mathrm{~m})$ and $2 \mathrm{H}-4(\delta 2.60, d d, J=16.3,9.0 \mathrm{~Hz}$ and $3.10, d d, J=16.3,6.0 \mathrm{~Hz}$).

The downfield chemical shift of $\mathrm{H}-2(\delta 4.63)$ and $\mathrm{H}-3$ ($\delta 4.08$) indicated that these two protons were next to oxygen-bearing carbons. From NOESY experiment, the methine proton at $\delta 4.63$ (H-2) showed no cross peak with $\mathrm{H}-3$ supporting that $\mathrm{H}-2$ and $\mathrm{H}-3$ were trans. From comparison of the reported data of gallocatechin (Foo et al., 2000), compound CMD13 was therefore assigned as 5,7,3', 4',5'-penta-O-methylgallocatechin.

Figure 12 Selected HMBC correlations of CMD13
Table $12{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound CMD13 $\left(\mathrm{CDCl}_{3}\right)$ and comparison with ${ }^{1} \mathrm{H}$ NMR of gallocatechin.

Position	Type of C	¢c /ppm	$\delta_{\mathrm{H}} / \mathrm{ppm}$ multiplicity, J / Hz)		$\begin{gathered} \mathrm{HMBC} \\ \mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C} \end{gathered}$
		CMD13	CMD13	Gallocatechin	
1	-	-	-	-	-
2	CH	82.2	4.63 (d, 8.4)	4.55 (d, 7.2)	3, 4, 9, 1', 2^{\prime}, (6')
3	CH	68.4	4.08 (m)	3.97 (m)	$1^{\prime}, 10$
4	CH_{2}	22.8	2.60 (dd, 16.3, 9.0)	2.4-2.9 (m)	2, 5, 9, 10
			3.10 (dd, 16.3, 6.0)		
5	C	158.8	-		-
6	CH	92.0	6.12 (d, 2.1)	5.94 (dd, 2.2)	5, 7, 8, 10
7	C	159.8	-		-
8	CH	93.0	6.15 (d, 2.1)	5.88 (d, 2.2)	6, 7, 9, 10
9	C	155.2	-		-
10	C	101.1	-		-
1^{\prime}	C	133.4	-		-
$2^{\prime}, 6^{\prime}$	CH	104.0	6.68 (s)	6.4 (s)	$2,1^{\prime}, 3^{\prime}, 4^{\prime}$
$3^{\prime}, 5^{\prime}$	C	153.6	-	-	-
4^{\prime}	C	138.2	-	-	-
$5-\mathrm{OMe}$	CH_{3}	55.5	3.81 (s)	-	5
7-OMe	CH_{3}	55.4	3.76 (s)	-	7
3^{\prime}, 5'-OMe	CH_{3}	60.8	3.88 (s)	-	$3^{\prime}, 5^{\prime}$
4^{\prime}-OMe	CH_{3}	56.2	3.86 (s)	-	4^{\prime}

CHAPTER 2.1

Introduction

2.1.1 Introduction

Michelia alba DC. (M. longifolia B.) is a member of the Magnoliaceae family and called "champee" in Thailand (Smitinand, 2001). The genus Michelia contains about 50 species. Michelia species have been used for the treatment of cancer, for example M. champaca has been used in India for the treatment of abdominal tumors whereas M. hypoleuca and M. officinalis for carcinomatous sores and leukemia, respectively (Chen et al., 2008). In the previous report, parthenolide and costunolide have been isolated from the chloroform extract of the fresh bark of Michelia longifolia Blume. Parthenolide displayed significant activity against the human laryngeal epidermoid carcinoma $\left(\mathrm{ED}_{50}=0.76\right)$ and the 9 KB cell culture system $\left(\mathrm{ED}_{50}=0.45\right)$. Costunolide showed reproducible inhibitory activity against the KB cell culture of a human carcinoma of the nasopharynx (Likhitwitayawuid et al., 1998).
M. alba is an evergreen tropical tree from Southeast Asia, 10-12 m tall. The bark is distinct ridges and brown color. Leaves are single arrange alternate oval, length 20 cm , width 8 cm . The flowers are fragrant white and have $8-12$ petals.

Figure 13 Different parts of Michelia alba DC.

2.1.2 Review of Literatures

Chemical constituents isolated from the ten species of this genus were summarized in Table 13. Information obtained from SciFinder Scholar copyright in 2009 will be presented and classified into groups: monoterpenoids, sesquiterpenoids, triterpenoids, alkaloids, steroids, amide, lignin, benzenoids and aliphatic.

Table 13 Compounds from plants of Michelia genus

a: aliphatic	b: steroids
c: amide	d: triterpenoids
e: sesquiterpenoids	f: monoterpenoids
g: lignin	h: alkaloids
i: benzenoids	

Scientific name	Part	Compounds	Bibliography
M. alba	Not specified Not specified Leaves	oxoushinsunin, 1h ushinsunin, 2h norushinsunin, 3h dehydrolinalool oxide, $\mathbf{1 f}$ costunolide, 1e caryophyllene oxide, $\mathbf{2 e}$ dihydrocostunolide, 3e dihydroparthenolide, $\mathbf{4 e}$ parthenolide, 5e (-)-anonaine, 4h (-)-norushinsunine, $\mathbf{5 h}$ (-)-ushinsunine, $\mathbf{6 h}$ (-)- N -acetylanonaine, 7h liriodenine, $\mathbf{8 h}$ oxoxylopine, 9 h michelenolide, $\mathbf{6 e}$ costunolide, 1e 11,13-dehydrolanuginolide, 7e N-trans-feruloyltyramine, $\mathbf{1 c}$ (+)-syringaresinol, $\mathbf{1 g}$	Yang et al., 1962 Asaruddin $e t$ al., 2003 Chen et al., 2008

Scientific name	Part	Compounds	Bibliography
M. alba	Leaves Flower Not specified Not specified	4-hydroxybenzaldehyde, 1i 4-hydroxybenzoic acid, 2i methylparaben, $\mathbf{3 i}$ β-sitosterol, 1b stigmasterol, 2b palmitic acid, 1a stearic acid, 2a linoleic acid, 3a eugenol methyl ether, $\mathbf{4 i}$ camphene, $\mathbf{2 f}$ α-pinene, $\mathbf{3 f}$ caryophyllene, $\mathbf{8 e}$ germacrene $\mathrm{D}, \mathbf{9 e}$ estragole, 5i spathulenol, 10e α-humulene, 11e eucalyptol, 4f deacetyllanuginolide, 12e michefuscalide, 13e azuleno[4,5-b]furan-2(3H)-one, 15e michefuscalide, 13e lipiferolide, 17e (-)-syringaresinol, 2g tribenzylmagnolamine, 10h tri-o-ethylmagnolamine, 11h coclaurine, 12h reticuline, 13h magnolamine, $\mathbf{1 4 h}$	Chen et al., 2008 Hung et al., 2009 Iida et al., 1982 Tanaka et al., 1981

Scientific name	Part	Compounds	Bibliography
M. fuscata	Leaves Not specified Not specified Fruit	thalictrine picrate, $\mathbf{1 5 h}$ D-(-)-2,2-dimethylcoclaurinium picrate, 16h (-)-magnocurarine, 17h α-magnoflorine, 18h magnolamine, 14h (+)-armepavine, 19h tri-o-methylmagnolamine, 20h o-methylcodamine, 21h magnolamine, 14h evoeuropine, 22h magnolin, 23h β-pinene, $\mathbf{5 f}$ α-terpineol, $\mathbf{6 f}$ safrole, $\mathbf{6 i}$ methyl eugenol ether, $7 \mathbf{i}$ epi- α-Selinene, 18e β-sesquiphellandrene, 19e α-cubebene, 20e α-bergamotene, 21e eudesma-4(14),11-diene, 22e α-muurolene, 23e α-caryophyllene, 24e copaene, 25e β-phellandrene, 16f β-elemene, $\mathbf{8 f}$ β-bisabolene, 26e δ-cadinene, 27e	Yakugaku et al., 1959 Ito et al., 1959 Aleshinskaya et al, 1957 Liu et al., 2007

Scientific name	Part	Compounds	Bibliography
M. hydyosperma M. lacei	Fruit Not specified Branches	eucalyptol, 9 f (+)-limonene, 10f safrole, $\mathbf{6 i}$ methyl eugenol ether, $\mathbf{7 i}$ (+)-alloaromadendrane-4 $\alpha, 10 \beta$ - diol, 28e D-aromadendrane- $4 \beta, 10 \alpha$-diol, 29e parthenolide, 5e spathulenol, 30e syringin, 8 i	Liu et al., 2007 Wu et al., 1981 Chen et al., 2002
M. lanuginose	Bark Bark	(-)-parthenolide, 5e $11 \beta \mathrm{H}, 13$-dihydroparthenolide, 4 e michelanugine, 24h N,O- diacetylmichelanugine, 25h oxoushinsunine, $\mathbf{1 h}$ oxoxylopine, 9h	Talapatra et al., 1978 Talapatra et al., 1975
M. maudiae		(\pm) $-\gamma$-cadinene, 31e γ-murolene, 32e 4-carene, 11f 1-alloaromadendrene, 33e 1-terpinen-4-ol, 12f β-cubebene, 34e	2007

Scientific name	Part	Compounds	Bibliography
M. maudiae	Leaves	(\pm-3-carene, $\mathbf{1 3 f}$	Cao et al., 2007
		(R)-(+)- α-pinene, $3 \mathbf{f}$	
		α-caryophyllene, 24e	
		espatulenol, 35e	
		(+)-limonene, 10 f	
		α-copaene, 25e	
		elixene, 14f	
		β-caryophyllene oxide, 36e	
		δ-terpinene, 15f	
		(+)-ledol, 37e	
		β-phellandrene, 16f	
		(-)- β-cadinene, 38e	
		β-elemene, 39e	
		2-borneol, 17f	
		α-gurjunene, 40e	
		(+)-aromadendrene, 41e	
		β-selinenol, 42e	
		eucalyptol, 4f	
		β-pinene, 5 f	
		γ-caryophyllen, 43e	
		γ-terpinene, 18f	
		α-terpineol, $\mathbf{6 f}$	
		3,3-dimethyl-2methylenenorbornane, $7 \mathbf{7}$	

Structures

a: aliphatic

$\mathrm{HO}_{2} \mathrm{C}-\left(\mathrm{CH}_{2}\right)_{16}-\mathrm{Me}$
1a: palmitic acid
2a: stearic acid

3a: linoleic acid
b: steroids

1b: β-sitosterol

2b: stigmasterol
c: amide

1c: N-trans-feruloyltyramine
d: triterpenoids

1d: oleanolic acid

e: sesquiterpenoids

1e: costunolide

3e: dihydrocostunolide

5e: parthenolide

7e: 11,13-dehydrolanuginolide

9e: germacrene D

2e: caryophyllene oxide

4e: dihydroparthenolide

6e: michelenolide

8e: caryophyllene

10e: spathulenol

e: sesquiterpenoids

11e: α-humulene

13e: michefuscalide

15e: azuleno[4,5-b]furan-2(3H)-one

17e: lipiferolide

19e: β-sesquiphellandrene

12e: deacetyllanuginolide

14e: 11,13-dihydrostizolin

16e: β-cyclolipiferolide

18e: epi- α-selinene

20e: α-cubebene
e: sesquiterpenoids

21e: α-bergamotene

23e: α-muurolene

25e: copaene

27e: δ-cadinene

29e: D-aromadendrane-4 $\beta, 10 \alpha$-diol

22e: eudesma-4(14),11-diene

24e: α-caryophyllene

26e: β-bisabolene

28e: (+)-alloaromadendrane-4 $\alpha, 10 \beta$-diol

30e: spathulenol
e: sesquiterpenoids

31e: $(\pm)-\gamma$-cadinene

33e: 1-alloaromadendrene

35e: espatulenol

37e: (+)-ledol

39e: β-elemene

32e: γ-murolene

34e: β-cubebene

36e: β-caryophyllene oxide

38e: (-)- β-cadinene

40e: α-gurjunene
e: sesquiterpenoids

41e: (+)-aromadendrene

43e: γ-caryophyllen

45e: sphaelactone A

47e: reinosin

42e: β-selinenol

44e: β-caryophyllene

46e: 1 β-hydroxyarbusculin A

48e: 12,13-di-acetoxy-1,4,6,11eudesmanetetrol

f: monoterpenoids

1f: dehydrolinalool oxide

3f: α-pinene

5f: β-pinene

7f: 3,3-dimethyl-2methylenenorbornane

9f: eucalyptol

2f: camphene

4f: eucalyptol

6f: α-terpineol

8f: β-elemene

10f: (+)-limonene
f: monoterpenoids

11f: 4-carene

13f: 3-carene

15f: δ-terpinene

17f: 2-borneol
g: lignin

1g: syringaresinol

12f: 1-terpinen-4-ol

14f: elixene

16f: β-phellandrene

18f: γ-terpinene

g: lignin

3g: 3,4-divanilyltetrahydrofuran

5g: horsfieldin

7g: (-)-eudesmin

$\mathbf{4 g}:(+)$-methylxanthoxylol

6g: (-)-sesamin

h: alkaloids

1h: oxoushinsunin

2h: ushinsunin

3h: norushinsunin

4h: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$
5h: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}, \mathrm{R}_{3}=\mathrm{OH}$
6h: $\mathrm{R}_{1}=\mathrm{CH}_{3}, \mathrm{R}_{2}=\mathrm{H}, \mathrm{R}=\mathrm{OH}$
4h: (-)-anonaine

7h: $\mathrm{R}=\mathrm{COCH}_{3}, \mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{H}$

5h: (-)-norushinsunine
6h: (-)-ushinsunine
7h: (-)-N-acetylanonaine

8h: R = H
9h: $\mathrm{R}=\mathrm{OH}$

8h: liriodenine
9h: oxoxylopine

h: alkaloids

10h: tribenzylmagnolamine

12h: coclaurine

14h: magnolamine

11h: tri-O-ethylmagnolamine

13h: reticuline

15h: thalictrine picrate

16h: D-(-)-2,2-dimethylcoclaurinium picrate

17h: (-)-magnocurarine

h: alkaloids

18h: α-magnoflorine

20h: tri-O-methylmagnolamine

19h: (+)-armepavine

21h: O-methylcodamine

23h: magnolin

25h: N,O-diacetylmichelanugine
i: benzenoids

1i: $\mathrm{R}=\mathrm{H}$
1i: 4-hydroxybenzaldehyde
2i: $\mathrm{R}=\mathrm{OH}$
2i: 4-hydroxybenzoic acid
3i: $\mathrm{R}=\mathrm{OCH}_{3}$
3i: methylparaben

4i: eugenol methyl ether

6i: safrole

8i: syringing

10i: asaricin

5i: estragole

7i: methyl eugenol ether

9i: sarisan

11i: α-asaron
i: benzenoids

12i: myristicin

14i: sinapaldehyde

13i: eugenyl methyl ether

15i: syringaldehyde

2.1.3 Objective

This part of research work involved isolation, purification and structure elucidation of chemical constituents from the root of Michelia alba.

CHAPTER 2.2

EXPERIMENTAL

2.2.1 Instruments and Chemicals

Melting points were determined on the Fisher-John melting point apparatus. The UV spectra were measured with a SPECORD S 100 (Analytikjena) and principle bands ($\lambda_{\max }$) were recorded as wavelengths (nm) and $\log \varepsilon$ in MeOH solution. The optical rotation $[\alpha]_{D}$ was measured in chloroform and methanol solution with Sodium D line (590 nm) on a JASCO P-1020 digital polarimeter. The IR spectra were measured with a Perkin-Elmer FTS FT-IR spectrophotometer. NMR spectra were recorded using 300 MHz Bruker FTNMR Ultra Shield ${ }^{\mathrm{TM}}$ spectrometers in acetone- d_{6} and CDCl_{3} with TMS as the internal standard. Chemical shifts are reported in δ (ppm) and coupling constants (J) are expressed in hertz. EI and HRFAB mass spectra were measured on a Kratos MS 25 RFA spectrometer. Solvents for extraction and chromatography were distilled at their boiling point ranges prior to use except chloroform was analytical grade reagent. Quick column chromatography (QCC) and column chromatography (CC) were carried out on silica gel 60 H (Merck) and silica gel 100 (Merck), respectively.

2.2.2 Plant Material

The root of M. alba was collected from Chumphon province in the southern part of Thailand, in May 2008. Identification was made by Assoc. Prof. Dr. Kitichate Sridith and a specimen (No. 0013594) deposited at PSU Herbarium, Department of Biology, Faculty of Science, Prince of Songkla University.

2.2.3 Extraction and Isolation

The chopped air-dried root of M. alba (1.0 kg) was successively extracted with methylene chloride and acetone (one week for each solvent) at room temperature. The solvent was evaporated under reduced pressure to give crude methylene chloride extract as green viscous residue (23.5 g) and crude acetone extract $(15.0 \mathrm{~g})$, respectively. The process of extraction was shown in Scheme 4.

Scheme 4. Extraction of the root of M. alba

2.2.4 Isolation and Chemical Investigation

2.2.4.1 Investigation of the crude methylene chloride extract from the root of M. $a l b a$

*No further investigation
Scheme 5 Isolation of compounds JPD1- JPD7 from the methylene chloride extract

The crude methylene chloride extract as green viscous residue (23.5 g) was subjected to quick column chromatography over silica gel using solvent of increasing polarity from hexane through EtOAc. The eluates were collected and combined based on TLC characteristics to give fourteen fractions (P1-P14).

Fraction P5 (235.0 mg) was purified by CC with 10% acetone/hexane to give JPD5: T-cadinol (55.0 mg).

Fraction P6 (2.3 g) was filtered and washed with hexane to give JPD1: costunolide (1.21 g) as white crystal and the mother liquor as violet viscous oil after evaporation of the solvent.

Fraction P7 (2.8 g) was filtered and washed with hexane to give JPD2: parthenolide (1.71 g) as white crystal and the mother liquor as green viscous oil after evaporation of the solvent.

Fraction P8 (115.7 mg) was separated by CC with $30 \% \mathrm{EtOAc} / \mathrm{hexane}$ to give JPD4: reynosin (10.7 mg).

Fraction P10 (111.8 mg) was separated by CC with 30% acetone/hexane to give JPD3: 9β-hydroxy- $11 \beta \mathrm{H}$-dihydroparthenolide (6.7 mg), JPD6: 2-($3^{\prime}, 4^{\prime}, 5^{\prime}$-trihydroxy- 3^{\prime}-methylbutanoyloxy)-11 β H-dihydroparthenolide (14.0 mg) and JPD7: lariciresinol (8.8 mg).

Compound JPD1: costunolide, white solid, m.p. 103-105 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}$: $+132^{\circ}\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$;ref $[\alpha]_{\mathrm{D}}{ }^{28}:+131^{\circ}\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$ (Ming et al., 1989); UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 207$ (3.56) nm; IR (neat) $v_{\max } 1763$ ($\mathrm{C}=\mathrm{O}$ stretching) and $1663\left(\mathrm{C}=\mathrm{C}\right.$ stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 14.

Compound JPD2: parthenolide, white solid, m.p. $113-115{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}$: $-50^{\circ}\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right) ; \operatorname{ref}[\alpha]_{\mathrm{D}}{ }^{28}:-26^{\circ}\left(\mathrm{c}=0.03, \mathrm{CHCl}_{3}\right)($ Galal et al., 1999); UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205(3.59) \mathrm{nm}$; IR (neat) $v_{\max } 1769(\mathrm{C}=\mathrm{O}$ stretching) and 1680 (C=C stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 15.

Compound JPD3: 9β-hydroxy-11 $\beta \mathrm{H}$-dihydroparthenolide, white solid, m.p. $143-145^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}:-49.3^{\circ}\left(\mathrm{c}=1.45, \mathrm{CHCl}_{3}\right)$. UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (3.62) nm; IR (neat) $v_{\max } 3444$ ($\mathrm{O}-\mathrm{H}$ stretching), 1769 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1669 (C=C stretching) cm^{-1}. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 16.

Compound JPD4: reynosin, white solid, m.p. 133-135 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}$: $+95.6\left(\mathrm{c}=0.06, \mathrm{CHCl}_{3}\right) ; \operatorname{ref}[\alpha]_{\mathrm{D}}{ }^{28}:+137^{\circ}\left(\mathrm{c}=0.11, \mathrm{CHCl}_{3}\right)($ Abegaz et al., 1991); UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 205$ (3.63) nm; IR (neat) $v_{\max } 3467$ (O-H stretching), 1766
($\mathrm{C}=\mathrm{O}$ stretching) and $1654(\mathrm{C}=\mathrm{C}$ stretching $) \mathrm{cm}^{-1}$. For ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 17.

Compound JPD5: T-cadinol, white solid, m.p. $44-46{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}{ }^{28}:+5^{\circ}$ (c = 0.9), $\left.\mathrm{CHCl}_{3}\right) ; \operatorname{ref}[\alpha]_{\mathrm{D}}{ }^{28}:+3^{\circ}\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right)($ Claeson et al., 1991); IR (neat) $v_{\max } 3450\left(\mathrm{O}-\mathrm{H}\right.$ stretching) and $1668(\mathrm{C}=\mathrm{C}$ stretching $) \mathrm{cm}^{-1}$. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz})$ spectral data and ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 18.

Compound JPD6: $\quad 2 \alpha$-($3^{\prime}, 4^{\prime}, 5^{\prime}$-trihydroxy- 3^{\prime}-methylbutanoyloxy)$11 \beta \mathrm{H}$-dihydroparthenolide, colorless viscous oil; $\left.[\alpha]_{\mathrm{D}}{ }^{28}:-43^{\circ}(\mathrm{c}=0.7), \mathrm{CHCl}_{3}\right)$. UV $\lambda_{\max }(\mathrm{MeOH})(\log \varepsilon): 206$ (3.76) nm; IR (neat) $v_{\max } 3437$ (O-H stretching), 1770 ($>\mathrm{C}=\mathrm{O}$ stretching) and 1639 ($\mathrm{C}=\mathrm{C}$ stretching) cm^{-1}. HRFAB: $m / z[\mathrm{M}+\mathrm{H}]^{+} 399.2015$ (calcd for $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{8}, 3992019$); For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ spectral data and ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 19.

Compound JPD7: lariciresinol, yellow viscous oil; $[\alpha]_{\mathrm{D}}{ }^{28}:+35^{\circ}(\mathrm{c}=$ 1.3), CHCl_{3}); ref $[\alpha]_{\mathrm{D}}{ }^{28}:+30^{\circ}\left(\mathrm{c}=0.10, \mathrm{CHCl}_{3}\right)$ (xie et al., 2003); UV $\lambda_{\text {max }}(\mathrm{MeOH})$ $(\log \varepsilon): 205$ (3.76), 228 (3.24) and 281 (2.87) nm; IR (neat) $v_{\max } 3419(\mathrm{O}-\mathrm{H}$ stretching) and $1604(\mathrm{C}=\mathrm{C}$ stretching $) \mathrm{cm}^{-1}$. For ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 75 \mathrm{MHz}\right)$ spectral data see Table 20.

CHAPTER 2.3
 RESULTS AND DISCUSSION

2.3.1 Structure elucidation of compounds from the root of M. alba

The crude methylene chloride extract from the root of M. alba were subjected to repeated quick column and column chromatography over silica gel to furnish one new sesquiterpene: $2 \alpha-\left(3^{\prime}, 4^{\prime}, 5^{\prime}\right.$-trihydroxy- 3^{\prime}-methylbutanoyloxy)-11 $\beta \mathrm{H}$ dihydroparthenolide (JPD6) together with five known sesquiterpenes: costunolide (JPD1), parthenolide (JPD2), 9β-hydroxy-11 $\beta \mathrm{H}$-dihydroparthenolide (JPD3), reynosin (JPD4) and T-cadinol (JPD5), and one known lignan: lariciresinol (JPD7).

Their structures were elucidated mainly by 1D and 2D NMR spectroscopic data: ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR, DEPT 135°, DEPT 90°, HMQC, HMBC, COSY and NOESY. The physical data of the known compounds were also compared with the reported values. Mass spectra were determined for the new sesquiterpene: $2 \alpha-$ ($3^{\prime}, 4^{\prime}, 5^{\prime}$-trihydroxy-3'-methylbutanoyloxy)-11 $\beta \mathrm{H}$-dihydroparthenolide (JPD6).

2.3.1.1 Compound JPD1

Compound JPD1 was obtained as a white solid, mp 103-105 ${ }^{\circ} \mathrm{C}$, $[\alpha]_{\mathrm{D}}{ }^{28}:+132^{\circ}\left(\mathrm{c}=0.30, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands at 1763 cm^{-1} indicating the presence of an α, β-unsaturated γ-lactone.

The ${ }^{13} \mathrm{C}$ NMR spectral data displayed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of two methyl ($\delta 16.0$ and 17.6), five methylene ($\delta 26.1,27.9,39.3,40.9$ and 119.8), four methine ($\delta 50.7,82.0,127.0$ and 127.3) and four quaternary carbons (δ 136.8, 140.0, 141.3 and 170.3).The ${ }^{1} \mathrm{H}$ NMR spectral data showed signals assignable to two tertiary methyls at $\delta 1.42(s, \mathrm{Me}-14)$ and $\delta 1.70(s$, Me-15), a methine at $\delta 2.57$ (m, H-7), the downfield exocyclic methylenes at $\delta 5.53(1 \mathrm{H}, d, J=3.6 \mathrm{~Hz}, \mathrm{H}-13)$ and $6.25(1 \mathrm{H}, d, J=3.6 \mathrm{~Hz}, \mathrm{H}-13)$, a methine bearing the oxygen function at $\delta 4.57(t, J=$ $9.9 \mathrm{~Hz}, \mathrm{H}-6)$, and two olefins at $\delta 4.84(1 \mathrm{H}, \operatorname{brdd}, J=10.5,3.9 \mathrm{~Hz}, \mathrm{H}-1)$ and 4.74 $(1 \mathrm{H}, b r d, J=9.9 \mathrm{~Hz}, \mathrm{H}-5)$ together with four methylene protons.

The locations of the two methyl groups (Me-14 and Me-15) at C-10 and C-4, respectively were deduced from HMBC correlations of Me-14 ($\delta 1.42$) with $\mathrm{C}-9(\delta 40.9)$, $\mathrm{C}-10(\delta 136.8)$ and $\mathrm{C}-1(\delta 127.0)$ and of Me-15 ($\delta 1.70$) with C-3 (δ 39.3), C-4 ($\delta 140.0$) and C-5 ($\delta 127.3$). The stereochemistry at C-6 and C-7 in compound JPD1 was assigned from NOESY experiments. Since no cross peak was observed between H-6 and H-7, compound JPD1 should contain a trans-fused lactone ring. The lack of NOESY cross peaks between $\mathrm{H}-1$ and $\mathrm{Me}-14$ and between $\mathrm{H}-5$ and Me-15 suggested E-configurations of both double bonds. On the basis of the above results and comparison with the reported data of costunolide [Ming et al., 1989], compound JPD1 was assigned as costunolide.

Figure 14 Selected HMBC correlations of JPD1
Table $14 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD1 $\left(\mathrm{CDCl}_{3}\right)$ and costunolide ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C } \end{aligned}$	\%c /ppm		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)		$\underset{\mathrm{H}^{1} \rightarrow{ }^{\mathrm{HM} \mathrm{C}} \mathrm{C}}{\mathrm{HMBC}}$
		JPD1	R	JPD1	R	
1	CH	127.0	127.0	4.84 (brdd,	4.84 (brdd,	2, 3, 9, 14
				10.5, 3.9)	12.3, 4.0)	
2	CH_{2}	26.1	28.2	2.0-2.4 (m)	1.67 (m),	1, 3, 4, 10
					2.0-2.4 (m)	
3	CH_{2}	39.3	41.1	2.4-2.0 (m)	2.4-2.0 (m)	6, 7, 12
4	C	140.0	140.0	-	-	-
5	CH	127.3	127.2	4.74 (brd, 9.9)	4.73 (brd, 10.5)	3, 6, 7, 11, 15
6	CH	82.0	82.0	$4.57(t, 9.9)$	$4.57(t, 9.5)$	4, 5, 7, 8, 11
7	CH	50.7	50.5	2.57 (m)	2.56 (m)	6, 9, 11, 12, 13
8	CH_{2}	27.9	26.3	1.67 (m),	2.0-2.4 (m)	6, 7, 9, 10
				2.0-2.4 (m)		
9	CH_{2}	40.9	39.7	2.0-2.4 (m)	2.0-2.4 (m)	1, 7, 8, 10
10	C	136.8	136.9	-	-	-
11	C	141.3	141.4	-	-	-
12	C	170.3	170.4	-	-	-

Table 14 (Continued)

Position	Type of C	¢c /ppm		¢H / ppm (multiplicity, J/Hz)		$\underset{\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}}{\mathrm{HMBC}}$
		JPD1	R	JPD1	R	
13	CH_{2}	119.8	119.7	$\begin{gathered} 5.53(d, 3.6), \\ 6.25(d, 3.6) \end{gathered}$	$\begin{aligned} & 5.51(d, 3.5) \\ & 6.25(d, 3.5) \end{aligned}$	6, 7, 12
14 15	$\begin{aligned} & \mathrm{CH}_{3} \\ & \mathrm{CH}_{3} \end{aligned}$	16.0 17.6	$\begin{aligned} & 16.3 \\ & 17.5 \end{aligned}$	$\begin{aligned} & 1.42(s) \\ & 1.70(s) \end{aligned}$	$\begin{aligned} & 1.40(s) \\ & 1.70(s) \end{aligned}$	$\begin{aligned} & 1,2,8,9,10 \\ & 3,4,5,6 \end{aligned}$

2.3.1.2 Compound JPD2

Compound JPD2 was obtained as a white solid, mp 113-115 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}$ ${ }^{28}:-50^{\circ}\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands of an $\alpha, \beta-$ unsaturated γ-lactone at $1769 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data showed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of two methyl ($\delta 17.0$ and 17.3), five methylene ($\delta 24.2,31.7,36.4,41.2$ and 121.3), four methine ($\delta 47.7,66.4,82.5$ and 125.3) and four quaternary carbons ($\delta 61.6,134.7$, 139.3 and 169.3). The ${ }^{1} \mathrm{H}$ NMR spectral data displayed the signals for exocyclic methylene protons conjugated with the γ-lactone ring system at $\delta 5.63(\mathrm{H}-13, d, J=$ $3.6 \mathrm{~Hz})$ and $6.35(\mathrm{H}-13, d, J=3.6 \mathrm{~Hz})$, a lactone proton signal at $\delta 3.86(\mathrm{H}-6, t, J=$ $8.7 \mathrm{~Hz})$, an oxymethine proton at $\delta 2.79(1 \mathrm{H}, d, J=8.7 \mathrm{~Hz}, \mathrm{H}-5)$, two methyl signals at $\delta 1.71(\mathrm{Me}-14, s)$ and $1.30(\mathrm{Me}-15, s)$. The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound JPD2 were closely related to those of compound JPD1 suggesting the same sesquiterpene lactone skeleton. The differences were shown at positions 4 and 5 in which an olefinic methine proton $\mathrm{H}-5$ at $\delta_{\mathrm{H}} 4.74$ in JPD1 was replaced by an oxymethine proton at $\delta_{\mathrm{H}} 2.79(d, J=8.7 \mathrm{~Hz})$ in JPD2 and the chemical shifts of C-4 ($\delta 140.0$) and C-5 ($\delta 127.3$) which were those of sp^{2} carbons in JPD1 were replaced by those of C-4 ($\delta 61.6$) and C-5 ($\delta 66.4$) in JPD2 whose values suggested an epoxide functionality.

The stereochemistry at C-4, C-5, C-6 and C-7 was deduced by NOESY experiment. Cross peaks were observed between $\mathrm{H}-5 / \mathrm{H}-7$, $\mathrm{H}-6 / \mathrm{Me}-15$, with the absence of cross peaks between $\mathrm{H}-6 / \mathrm{H}-7$ and $\mathrm{H}-5 / \mathrm{Me}-15$. These results indicated the trans-fused lactone ring and also the orientation of the epoxy group to be trans to Me-

15 and to $\mathrm{H}-5$. Thus on the basis of its spectroscopic data and comparison with the previously reported data of parthenolide (Galal et al., 1999), compound JPD2 was therefore, assigned as parthenolide.

Figure 15 Selected HMBC correlations of JPD2

Table $15{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD2 $\left(\mathrm{CDCl}_{3}\right)$ and parthenolide ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Table 15 (Continued)

Position	Type of C	¢c /ppm		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)		$\begin{aligned} & \underset{\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}}{\mathrm{HMBC}} \end{aligned}$
		JPD2	R	JPD2	R	
10	C	134.7	134.6	-	-	-
11	C	139.3	139.2	-	-	-
12	C	169.3	169.2	-	-	-
13	CH_{2}	121.3	121.1	$\begin{gathered} 5.63(d, 3.6), \\ 6.35(d, 3.6) \end{gathered}$	$\begin{gathered} 5.63(d, 3.6), \\ 6.35(d, 3.6) \end{gathered}$	7, 11, 12
14	CH_{3}	17.0	16.5	1.71 (s)	1.72 (s)	1, 9, 10
15	CH_{3}	17.3	17.2	1.30 (s)	1.31 (s)	3, 4, 5

2.3.1.3 Compound JPD3

Compound JPD3 was obtained as a white solid , mp 143-145 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}$ ${ }^{28}:-49.3^{\circ}\left(\mathrm{c}=1.45, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands at 3444 and $1769 \mathrm{~cm}^{-1}$ indicating the presence of hydroxyl and γ-lactone functionalities, respectively.

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound JPD3 were comparable to those of compound JPD2. The major differences between compound JPD3 and compound JPD2 were that compound JPD3 did not show the two downfield doublets at $\delta_{\mathrm{H}} 5.63$ and 6.35 due to the exocyclic methylene protons as in compound JPD2. Instead, in compound JPD3 a new methyl signal at $\delta_{\mathrm{H}} 1.30(d, J=7.2 \mathrm{~Hz})$ appeared together with a multiplet signal of a methine proton at $\delta_{\mathrm{H}} 2.30$. A new oxymethine proton was also evidenced at $\delta_{\mathrm{H}} 4.15(\mathrm{~m})$ whose position at $\mathrm{C}-9$ was determined through an HMBC experiment which showed correlations with $\mathrm{C}-1$ (δ 125.8), C-7 ($\delta 48.3$), C-8 ($\delta 37.8$) and C-14 ($\delta 10.8$). The new methyl protons at δ 1.30 (Me-13) was attached to the ring at $\mathrm{C}-11$ due to its HMBC correlations with $\mathrm{C}-7$ ($\delta 48.3$), C-11 ($\delta 42.0$) and C-12 ($\delta 177.2$). NOESY experiment displayed cross peaks of $\mathrm{H}-7 / \mathrm{Me}-13 / \mathrm{H}-9$ and $\mathrm{H}-6 / \mathrm{H}-11$ suggesting $9 \beta \mathrm{OH}$ and $11 \beta \mathrm{H}$. Thus on the basis of its spectroscopic data and comparison with the previous report [Galal et al., 1999], compound JPD3 was assigned as 9β-hydroxy- $11 \beta \mathrm{H}$-dihydroparthenolide.

Figure 16 Selected HMBC correlations of JPD3
Table $16{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD3 $\left(\mathrm{CDCl}_{3}\right)$ and 9β-hydroxy- $11 \beta \mathrm{H}$-dihydroparthenolide ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	$\begin{aligned} & \text { Type } \\ & \text { of C } \end{aligned}$	ठc /ppm		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J / Hz)		$\underset{\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}}{\mathrm{HMBC}}$
		JPD3	R	JPD3	R	
1	CH	125.8	126.6	5.36 (dd, 12.0, 2.7)	5.37 (dd, 12.3, 1.2)	2, 3, 9, 14
2	CH_{2}	23.6	24.2	2.16 (m),	2.16 (m),	1, 3, 4, 10
				2.46 (m)	2.46 (dddd, 13.4,	
					12.2, 5.4, 4.5)	
3	CH_{2}	36.3	36.8	1.12 (m), 2.13 (m)	1.12 (ddd, 13.0,	1, 5, 15
					5.6, 5.5), 2.14 (m)	
4	C	61.4	61.8	-	-	-
5	CH	66.0	66.5	2.61 (d, 8.7)	2.6 (d, 8.9)	3, 4, 6, 7
6	CH	81.3	81.7	$3.81(t, 8.7)$	$3.8(t, 8.6)$	4, 5, 7, 8, 11
7	CH	48.3	48.9	1.96 (m)	1.96 (m)	5, 9, 11, 13
8	CH_{2}	37.8	38.2	1.96 (m), 1.89 (m)	1.96 (m), 1.86 (m)	6, 9, 11
9	CH	80.0	80.0	4.15 (m)	4.16 (m)	1, 7, 10,14
10	C	136.6	136.9	-	-	-
11	CH	42.0	42.5	2.30 (m)	2.29 (m)	6, 8, 12, 13
12	C	177.2	177.4	-	-	

Table 16 (Continued)

Position	Type of C	$\delta \mathrm{JPD} / \mathrm{ppm}$		R	$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J/Hz)	
				JPD 3	R	
13	CH_{3}	13.6	13.6	$1.30(\mathrm{~d}, 7.2)$	$1.30(\mathrm{~d}, 7.0)$	$7,11,12$
14	CH_{3}	10.8	11.3	$1.73(\mathrm{~s})$	$1.73(\mathrm{~s})$	$1,9,10$
15	CH_{3}	17.2	17.7	$1.31(\mathrm{~s})$	$1.31(\mathrm{~s})$	$3,4,5$

2.3.1.4 Compound JPD4

Compound JPD4 was obtained as a white solid, mp 133-135 ${ }^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}$ ${ }^{28}:+95.6\left(\mathrm{c}=0.26, \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands at 3467 and $1766 \mathrm{~cm}^{-1}$ indicating the presence of hydroxyl and γ-lactone functionalities, respectively.

The ${ }^{13} \mathrm{C}$ NMR and DEPT spectral data exhibited 15 carbons, attributable to one methyl ($\delta 11.6$), six methylene ($\delta 21.4,31.3,33.5,35.7,110.0$ and 117.0), four methine ($\delta 49.6,53.0,78.2$ and 79.6) and four quaternary carbons ($\delta 43.0$, 139.2, 142.4 and 170.7). The ${ }^{1} \mathrm{H}$ NMR spectral data displayed signals assignable to a tertiary methyl at $\delta 0.81$ (Me-14), an oxymethine at $\delta 3.55(1 \mathrm{H}, d d, J=11.4,4.5 \mathrm{~Hz}$, $\mathrm{H}-1)$ and two sets of exocyclic methylene protons at $\delta 4.85(1 \mathrm{H}, \mathrm{br} s, \mathrm{H}-15), 5.00$ ($1 \mathrm{H}, b r s, \mathrm{H}-15$) and $5.43(1 \mathrm{H}, d, J=3.6, \mathrm{H}-13), 6.10(1 \mathrm{H}, d, J=3.6 \mathrm{~Hz}, \mathrm{H}-13)$.

The locations of the two sets of exocyclic methylene protons at C-13 and $\mathrm{C}-15$ were confirmed by HMBC correlations of $2 \mathrm{H}-13$ at $\delta 5.43$ and 6.10 with the carbons at $\mathrm{C}-11(\delta 139.2), \mathrm{C}-12(\delta 170.7)$ and $\mathrm{C}-7(\delta 49.6)$, and of $2 \mathrm{H}-15$ at $\delta 4.85$ and 5.00 with C-3 ($\delta 33.5$), C-4 ($\delta 142.4$) and C-5 ($\delta 53.0$). In addition an oxymethine proton at $\delta 3.55$ showed correlations with C-2 ($\delta 31.3$), C-3 ($\delta 33.5$), C-10 ($\delta 43.0$), C-5 (δ 53.0) and C-14 (δ 11.6) suggesting a hydroxyl group at C-1. NOESY experiment displayed cross peak between $\mathrm{H}-1 / \mathrm{H}-5, \mathrm{H}-5 / \mathrm{H}-7, \mathrm{H}-6 / \mathrm{Me}-14$ and no cross peaks between $\mathrm{H}-6 / \mathrm{H}-7$ suggesting that $\mathrm{Me}-14$ and $\mathrm{H}-6$ were on the same side whereas those of $\mathrm{H}-1, \mathrm{H}-5$ and $\mathrm{H}-7$ were on the same side but opposite to $\mathrm{Me}-14$ and H-6 and the lactone ring was trans-fused as in compounds JPD1 and JPD2. On the basis of the above analysis and comparison with the literatures, the structure of JPD4 was identified as reynosin (Abegaz et al., 1991).

Figure 17 Selected HMBC correlations of JPD4
Table $17{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD4 $\left(\mathrm{CDCl}_{3}\right)$ and reynosin $\left(\mathbf{R}, \mathrm{CDCl}_{3}\right)$

Position	Type of C	¢c/ppm	$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity, J/Hz)		$\begin{gathered} \mathrm{HMBC} \\ \mathrm{H} \xrightarrow{13} \mathrm{C} \end{gathered}$
		JPD4	JPD4	R	
1	CH	78.2	3.55 (dd, 11.4, 4.5)	3.55 (dd, 12.0, 6.0)	2, 3, 5, 10, 14
2	CH_{2}	31.3	-	-	-
3	CH_{2}	33.5	1.60 (m), 1.80 (m)	-	-
4	C	142.4	-	-	-
5	CH	53.0	2.19 (d, 10.8)	-	1,3, 7, 9
6	CH	79.6	4.02 ($t, 10.8$)	4.02 ($t, 11.0)$	4, 5, 8, 10, 11, 12
7	CH	49.6	2.55 (td, 11.5, 3.0)	-	5, 6, 8, 11, 13
8	CH_{2}	21.4	1.60 (m), 2.10 (m)	-	-
9	CH_{2}	35.7	1.30 (m), 2.15 (m)	-	-
10	C	43.0	-	-	-
11	C	139.2	-	-	-
12	C	170.7	-	-	-
13	CH_{2}	117.0	5.43 (d, 3.6),	5.43 (d, 3.6),	7,11, 12
			6.10 (d, 3.6)	6.10 (d, 3.6)	
14	CH_{3}	11.6	0.81 (s)	0.80 (s)	1, 5, 9, 10
15	CH_{2}	110.0	4.85 (br s)	4.85 (br s)	3, 4, 5
			5.00 (br s)	5.00 (br s)	

2.3.1.5 Compound JPD5

Compound JPD5 was obtained as a white solid, m.p. $44-46^{\circ} \mathrm{C},[\alpha]_{\mathrm{D}}{ }^{28}$: $\left.+5^{\circ}(\mathrm{c}=0.9), \mathrm{CHCl}_{3}\right)$. The IR spectrum showed absorption bands of hydroxyl group at $3450 \mathrm{~cm}^{-1}$ and double bond at $1668 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data showed 15 signals for 15 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four methyl ($\delta 15.2,21.2,26.1$ and 28.2), four methylene ($\delta 19.8,22.6,30.9$ and 40.3), five methine ($\delta 23.7,37.7,46.6,47.9$ and 122.6) and two quaternary carbons ($\delta 70.7$, and 134.3).

The ${ }^{1} \mathrm{H}$ NMR spectral data displayed the signals for an isopropyl group at $\delta 2.18(1 \mathrm{H}, m, \mathrm{H}-12), 0.79(3 \mathrm{H}, d, J=6.9 \mathrm{~Hz}, \mathrm{Me}-14)$ and $0.91(3 \mathrm{H}, d, J=6.9 \mathrm{~Hz}$, Me-13), a three-proton singlet at $\delta 1.22$ for a methyl attached to a quaternary carbon bearing a hydroxyl group, a trisubstituted olefinic proton at $\delta 5.55(1 \mathrm{H}$, brs, H-5) and a methyl group at $\delta 1.67$ (brs).

The stereochemistry at C-1, C-6, C-7 and C-10 was deduced by NOESY experiment. Cross peaks were observed between $\mathrm{H}-1 / \mathrm{H}-7, \mathrm{H}-1 / \mathrm{Me}-15$, with the absence of cross peaks between $\mathrm{H}-1 / \mathrm{H}-6$. These results indicated the trans-fused ring of JPD5. Thus on the basis of its spectroscopic data and comparison with the previously reported data of T-cadinol (Claeson et al., 1991), compound JPD5 was therefore, assigned as T-cadinol.

Figure 18 Selected HMBC correlations of JPD5
Table $18{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD5 $\left(\mathrm{CDCl}_{3}\right)$ and T-cadinol ($\mathbf{R}, \mathrm{CDCl}_{3}$)

Position	Type of C	¢c /ppm		$\delta_{\mathrm{H}} / \mathrm{ppm}($ multiplicity, J / Hz)		$\begin{aligned} & \mathrm{HMBC} \\ & \mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C} \end{aligned}$
		JPD5	R	JPD5	R	
1	CH	47.9	47.9	$\begin{gathered} 1.10(d d, 10.2, \\ 2.1) \end{gathered}$	$\begin{gathered} 1.09(d d d, 12.3, \\ 10.2,1.9) \end{gathered}$	3, 6, 7
2	CH_{2}	22.6	22.6	1.93 (m), 1.35 (m)	1.92 (m), 1.35 (m)	-
3	CH_{2}	30.9	30.9	1.89-2.20 (m)	1.92-2.08 (m)	-
4	C	134.3	134.3	-	-	-
5	CH	122.6	122.6	5.55 (brs)	5.55 (brs)	1,3, 6, 7, 11
6	CH	37.7	37.7	1.97 (brs)	1.95 (brs)	2, 4, 5, 10, 12
7	CH	46.6	46.6	1.00 (tt, 11.1, 2.1)	1.00 (tt, 11.3, 3.2)	1,6, 8, 9, 12, 13
8	CH_{2}	19.8	19.8	1.45 (m), 1.33 (m)	1.47 (m), 1.32 (m)	-
9	CH_{2}	40.3	40.3	1.40 (m), 1.72 (m)	1.41 (m), 1.74 (m)	-
10	C	70.7	70.6	-	-	-
11	CH	23.7	23.8	1.67 (brs)	1.67 (brs)	3, 4, 5
12	CH_{3}	26.1	26.2	2.18 (hept d, 3.3)	2.18 (hept d, 3.2)	6, 7, 8, 13, 14
13	CH_{3}	21.2	21.4	0.91 (d, 6.9)	0.91 (d, 6.9)	7, 12, 14
14	CH_{3}	15.2	15.2	0.79 (d, 6.9)	0.79 (d, 7.0)	7, 12, 13
15	CH_{3}	28.2	28.5	1.22 (s)	1.22 (s)	1, 9, 10

2.3.1.6 Compound JPD6

Compound JPD6 was obtained as a colorless gum, $[\alpha]_{\mathrm{D}}{ }^{28}:-43^{\circ}(\mathrm{c}=$ 0.7), CHCl_{3}). It was assigned a molecular formula $\mathrm{C}_{20} \mathrm{H}_{31} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}$on the basis of a molecular ion at $m / z 399.2015$ by HRFABMS. The IR spectrum showed absorption bands of an α, β-unsaturated γ-lactone at $1770 \mathrm{~cm}^{-1}$ and hydroxyl at $3437 \mathrm{~cm}^{-1}$.

The ${ }^{13} \mathrm{C}$ NMR spectral data showed 20 signals for 20 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested the presence of four methyl ($\delta 17.0,17.6,18.2$ and 21.4), four methylene ($\delta 29.4,41.2,45.4$ and 72.0), seven methine ($\delta 42.4,51.8,66.3,66.4,73.2,81.8$ and 128.9) and five quaternary carbons ($\delta 60.7,73.5,136.2,177.2$ and 178.2).

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectral data of compound JPD6 were closely related to those of compound JPD3 suggesting the same sesquiterpene skeleton. The differences were shown in the main skeleton at C-9, of which that of JPD3 was an oxymethine carbon ($\delta 80.0$) whereas that of JPD6 was a methylene carbon ($\delta 41.2$). Another difference was shown as an additional ester side chain signals of JPD6 at δ $4.14\left(1 \mathrm{H}, d d, J=3.6,1.0 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 4.37\left(1 \mathrm{H}, d d, J=10.7,3.6 \mathrm{~Hz}, \mathrm{H}_{\mathrm{a}}-5^{\prime}\right), 4.31(1 \mathrm{H}$, $\left.d d, J=10.7,1.0 \mathrm{~Hz}, \mathrm{H}_{\mathrm{b}}-5^{\prime}\right)$ and $1.47\left(3 \mathrm{H}, s, \mathrm{Me}-6^{\prime}\right)$. The oxymethine $\mathrm{H}-4^{\prime}(\delta 4.14)$ showed COSY cross peak with an oxymethine H-5' ($\delta 4.37$) and also showed HMBC correlations with C-2' ($\delta 178.2$), C-3' ($\delta 73.5$), C-5' ($\delta 72.0$) and C-6' ($\delta 21.4$). The methyl protons Me-6' ($\delta 1.47$) showed HMBC correlations with C-2' (δ 178.2), C-3' ($\delta 73.5$) and $\mathrm{C}-4^{\prime}(\delta 73.2)$. These informations suggested a 2,3,4-trihydroxy-2methylbutanoyloxy side chain whose attachment at C-2 of a sesquiterpene skeleton was determined through an HMBC experiment in which the oxymethine proton signal
at $\delta 4.66(1 \mathrm{H}, \mathrm{dt}, J=10.5,5.7 \mathrm{~Hz}, \mathrm{H}-2)$ showed correlations with $\mathrm{C}-1(\delta 128.9), \mathrm{C}-3$ ($\delta 45.4$) and $\mathrm{C}-10(\delta 136.2)$. The multiplicity of the oxymethine proton $\mathrm{H}-2$ signal as a doublet of triplet ($J_{a x-a x}=10.5, J_{a x-e q}=5.7 \mathrm{~Hz}$) from coupling with $\mathrm{H}-1$ and $2 \mathrm{H}-3$, indicated that $\mathrm{H}-2$ was situated in an axial (β) position. NOESY experiment displayed cross peaks of $\mathrm{H}-1 / \mathrm{H}-5 / \mathrm{H}-7, \quad \mathrm{H}-6 / \mathrm{H}-11 / \mathrm{Me}-15$ and $\mathrm{H}-2 / \mathrm{Me}-14 / \mathrm{Me} 15 / \mathrm{H}-3 \beta$. suggesting α-orientation of 2,3,4-trihydroxy-2-methylbutanoyloxy side chain. Compound JPD6 was therefore suggested as $2 \alpha-\left(3^{\prime}, 4^{\prime}, 5^{\prime}\right.$-trihydroxy- 3^{\prime} -methylbutanoyloxy)-11 $\beta \mathrm{H}$-dihydro parthenolide, a new compound.

Figure 19 Selected HMBC correlations of JPD6
Table $19{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compound JPD6 $\left(\mathrm{CDCl}_{3}\right)$ and comparison of ${ }^{13} \mathrm{C}$ NMR with JPD3

Position	$\begin{aligned} & \text { Type } \\ & \text { of C } \end{aligned}$	$\delta \mathrm{c} / \mathrm{ppm}$		$\begin{gathered} \delta_{\mathrm{H}} / \mathrm{ppm} \\ \text { (multiplicity, } \mathrm{J} / \mathrm{Hz} \text {) } \end{gathered}$	$\underset{\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}}{\mathrm{HMBC}}$	COSY
		JPD6	JPD3	JPD6		
1	CH	128.9	125.8	5.25 (brd, 10.5)	3, 8, 9, 14	2
2	CH	66.4	23.6	4.66 (dt, 10.5, 5.7)	1, 3, 10	1,3
3	CH_{2}	45.4	36.3	2.55 (dd, 12.0, 5.7),	1,2, 4, 5, 6	2
				1.22 (dd, 12.0, 10.5)	-	
4	C	60.7	61.4	-	-	-
5	CH	66.3	66.5	2.79 (d, 9.3)	3, 4, 7	6

Table 19 (Continued)

Position	Type of C	$\delta \mathrm{c} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$ (multiplicity,	$\underset{\mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C}}{\mathrm{HMBC}}$	COSY
		JPD6	JPD3	JPD6		
6	CH	81.8	81.3	3.80 (t, 9.3)	4, 5, 7, 8, 11	5,7
7	CH	51.8	48.3	1.88 (m)	5, 6, 8, 9, 11, 13	6, 8, 11
8	CH_{2}	29.4	37.8	1.95 (m), 1.65 (m)	-	-
9	CH_{2}	41.2	80.0	2.10 (m), 2.30 (m)	1, 7, 8, 10	-
10	C	136.2	136.6	-	-	-
11	CH	42.4	42.0	2.30 (m)	7, 8, 12, 13	7,13
12	C	177.2	177.2	-	-	-
13	CH_{3}	13.2	13.6	1.29 (d, 6.9)	7,11,12	11
14	CH_{3}	17.6	10.8	1.77 (s)	1, 8, 9, 10	-
15	CH_{3}	18.2	17.2	1.30 (s)	3, 4, 5	-
2^{\prime}	C	178.2	-	-	-	-
3 '	C	73.5	-	-	-	-
4^{\prime}	CH	73.2	-	4.14 (dd, 3.6, 1.0)	$2^{\prime}, 3^{\prime}, 5^{\prime}, 6^{\prime}$	5^{\prime}
5	CH_{2}	72.0	-	4.37 (dd, 10.7, 3.6)	$2^{\prime}, 3^{\prime}, 4^{\prime}, 6^{\prime}$	4^{\prime}
				4.31 (dd, 10.7, 1.0)		
6^{\prime}	CH_{3}	21.4	-	1.47 (s)	$2^{\prime}, 3{ }^{\prime}, 4^{\prime}$	-

2.3.1.7 Compound JPD7

Compound JPD7 was isolated as a colorless viscous oil, $[\alpha]_{\mathrm{D}}{ }^{28}:+35^{\circ}$ $(\mathrm{c}=1.3), \mathrm{CHCl}_{3}$). Ihe IR spectrum showed absorption bands due to hydroxyl at 3419 cm^{-1} and double bond at $1604 \mathrm{~cm}^{-1}$. The UV absorption was shown at 205, 228 and 281 nm .

The ${ }^{13} \mathrm{C}$ NMR spectral data recorded in CDCl_{3} showed 20 signals for 20 carbons. Analysis of DEPT 90° and DEPT 135° spectra of this compound suggested a presence of four oxygenated olefinic quaternary carbons at $\delta 144.0$, 145.0, 146.5 and 146.6, two olefinic quaternary carbons at $\delta 132.3$ and 134.8, six aromatic carbons at $\delta 108.3,111.2,114.2,114.4,118.8$ and 121.9, an oxygenated methine carbon at $\delta 82.8$, two methine carbons at $\delta 42.4$ and 52.6 , two oxygenated methylene carbons at $\delta 60.9$ and 72.9 and two methoxyl carbons at $\delta 55.9 \times 2$.

The ${ }^{1} \mathrm{H}$ NMR spectral data showed signals at $\delta 6.88(1 \mathrm{H}, d, J=1.8, \mathrm{H}-$ 2), $6.82(1 \mathrm{H}, d, J=8.4, \mathrm{H}-5), 6.79(1 \mathrm{H}, d d, J=8.4,1.8, \mathrm{H}-6), 6.68\left(1 \mathrm{H}, d, J=1.8, \mathrm{H}-2^{\prime}\right)$, $6.85\left(1 \mathrm{H}, d, J=8.4, \mathrm{H}-5^{\prime}\right)$ and $6.69\left(1 \mathrm{H}, d d, J=8.4,1.8, \mathrm{H}-6^{\prime}\right)$ indicating two $1,3,4-$ trisubstituted benzene rings. An oxygenated methine signal at $\delta 4.78(1 \mathrm{H}, d, J=6.6$ $\mathrm{Hz}, \mathrm{H}-7)$, two methine signals at $\delta 2.40(1 \mathrm{H}, m, \mathrm{H}-8)$ and $2.73\left(1 \mathrm{H}, m, \mathrm{H}-8^{\prime}\right)$ and two methoxyl signals at $\delta 3.86(3 \mathrm{H}, s, 3-\mathrm{OMe})$ and $\delta 3.88\left(3 \mathrm{H}, s, 3^{\prime}-\mathrm{OMe}\right)$ were observed.

On the basis of HMBC the oxygenated methine proton $\mathrm{H}-7$ at $\delta 4.78$ showed correlations with C-1 ($\delta 134.8$), C-8 ($\delta 52.6$), C-9 ($\delta 60.9$), C-8' ($\delta 42.4$) and C-9' ($\delta 72.9$), a methine proton $\mathrm{H}-8$ at $\delta 2.40$ showed correlations with $\mathrm{C}-1$ ($\delta 134.8$), C-9 ($\delta 60.9$), C-7' ($\delta 33.3$), C-8' ($\delta 42.4$) and C-9' ($\delta 72.9$) and that of $\mathrm{H}-8^{\prime}$ at $\delta 2.73$ showed correlations with C-7 ($\delta 82.8$), C-8 ($\delta 52.6$), C-9 ($\delta 60.9$), C-1' ($\delta 132.3$), C7' ($\delta 33.3$) and C-9' ($\delta 72.9$).

The stereochemistry at C-7, C-8 and C-8' was deduced by NOESY experiment. Cross peaks were observed between $\mathrm{H}-8 / \mathrm{H}-\mathrm{B}^{\prime}$, with the absence of cross peaks between H -8/H-7. These results indicated that H-8 and H-8' were cis and H-8 and H-7 were trans. On the basis of its spectroscopic data and comparison with previously reported data (xie et al., 2003). Compound JPD7 was identified as lariciresinol.

Figure 20 Selected HMBC correlations of JPD7
Table $20 \quad{ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ NMR and HMBC spectral data of compounds JPD7 $\left(\mathrm{CDCl}_{3}\right)$ and lariciresinol ($\mathbf{R}, \mathrm{MeOD}$)

Position	$\begin{gathered} \text { Type of } \\ \text { C } \end{gathered}$	$\delta \mathrm{c} / \mathrm{ppm}$		$\delta_{\mathrm{H}} / \mathrm{ppm}$(multiplicity, J / Hz)		$\begin{gathered} \mathrm{HMBC} \\ \mathrm{H}^{1} \rightarrow{ }^{13} \mathrm{C} \end{gathered}$
		JPD7	R	JPD7	R	
1	C	134.8	135.8	-	-	-
2	CH	108.3	110.7	6.88 (d, 1.8)	6.90 (d, 1.8)	1, 4,6
3	C	146.5	149.0	-	-	-
4	C	145.0	147.1	-	-	-
5	CH	114.2	116.0	6.82 (d, 8.4)	6.76 (m)	1,3,6
6	CH	118.8	119.8	6.79 (dd, 8.4, 1.8)	6.75 (m)	1,2, 4, 5
7	CH	82.8	84.1	4.78 ($d, 6.6$)	4.74 (d, 7.0)	1, $8,9,8^{\prime}, 9^{\prime}$
8	CH	52.6	54.0	2.40 (m)	2.37 (m)	$1,9,7^{\prime}, 8^{\prime}, 9^{\prime}$
9	CH_{2}	60.9	60.5	3.74 (dd, 8.4, 6.6)	3.62 (dd, 10.9, 6.5)	-
				3.90 (dd, 8.4, 7.2)	3.83 (dd, 10.9, 8.0)	

Table 20 (Continued)

Position	Type of C	¢c /ppm		$\delta_{\mathrm{H}} / \mathrm{ppm}$(multiplicity, J / Hz)		$\begin{aligned} & \mathrm{HMBC} \\ & \mathrm{H}^{1} \rightarrow^{13} \mathrm{C} \end{aligned}$
		JPD7	R	JPD7	R	
1^{\prime}	C	132.3	133.6	-	-	-
2^{\prime}	CH	111.2	113.5	6.68 (d, 1.8)	6.79 (d, 1.9)	$4^{\prime}, 5^{\prime}, 6^{\prime}$
3^{\prime}	C	146.6	149.0	-	-	-
4^{\prime}	C	144.0	145.8	-	-	-
5^{\prime}	CH	114.4	116.2	6.85 (d, 8.4)	6.71 (d, 8.0)	$1^{\prime}, 3^{\prime}, 6^{\prime}$
6^{\prime}	CH	121.9	122.2	6.69 (dd, 8.4, 1.8)	6.64 (dd, 8.0, 1.9)	$2^{\prime}, 4^{\prime}, 7{ }^{\prime}$
$7{ }^{\prime}$	CH_{2}	33.3	33.7	$\begin{gathered} 2.54(d d, 13.2, \\ 10.8) \end{gathered}$	$\begin{gathered} 2.48(d d, 13.4, \\ 11.1) \end{gathered}$	
				$\begin{gathered} 2.92(d d, 13.2, \\ 5.1) \end{gathered}$	$\begin{gathered} 2.92(d d, 13.4, \\ 4.8) \end{gathered}$	
8^{\prime}	CH	42.4	43.9	2.73 (m)	2.73 (m)	$7,8,9,1^{\prime}, 7^{\prime}, 9^{\prime}$
9^{\prime}	CH_{2}	72.9	73.5	3.77 (dd, 8.4, 5.7)	3.72 (dd, 8.4, 5.8)	7, 8, 7^{\prime}
				4.05 (dd, 8.4, 6.6)	3.97 (dd, 8.4, 6.5)	
$3-\mathrm{OMe}$	CH_{3}	55.9	56.4	3.86 (s)	3.82 (s)	3
3'-OMe	CH_{3}	55.9	56.4	3.88 (s)	3.84 (s)	$3{ }^{\prime}$

CHAPTER 4

CONCLUSION

Thirteen known compounds; three triterpenes: friedelin (CMD1), 5(6)-gluten-3 α-ol (CMD2) and betulinic acid (CMD3), seven steroids: a mixture of β sitosterol (CMD4) and stigmasterol (CMD5), stigmast-4-en-3-one (CMD6), $6 \alpha-$ hydroxystigmast-4-en-3-one (CMD7), ergosterol peroxide (CMD8), 5α-cholest-7-en-3-one (CMD9) and lophenol (CMD10), 5-methylmellein (CMD11), 3,4,3'-tri-Omethylellagic acid (CMD12) and 5,7,3', 4', 5'-penta-O-methylgallocatechin (CMD13) were isolated from the stem of Punica granatum. Their structures were elucidated by spectroscopic methods. A mixture of CMD4 and CMD5 (2.3 g) and CMD1 (1.2 g) were major components.

One new sesquiterpene, $2 \alpha-\left(3^{\prime}, 4^{\prime}, 5^{\prime}\right.$-trihydroxy- 3^{\prime}-methylbutanoyloxy)$11 \beta \mathrm{H}$-dihydroparthenolide (JPD6), and six known compounds, five sesquiterpenes: costunolide (JPD1), parthenolide (JPD2), 9β-hydroxy-11 β H-dihydroparthenolide (JPD3), reynosin (JPD4) and T-cadinol (JPD5), one lignan: lariciresinol (JPD7) were isolated from the root of Michelia alba. Their structures were elucidated by spectroscopic methods. Compounds JPD1 (1.21 g) and JPD2 (1.71 g) were major components.

REFERENCES

Abegaz, B. M. 1991. Polyacetylenic thiophenes and terpenoids from the roots of Echinops Pappii. Phytochemistry. 30, 879-881.

Al-Maiman, S. A., \& Ahnad, D. 2002. Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chemistry. 76, 437441.

Ahad, A. M., Goto, Y., Kiuchi, F., Tsuda, Y., Kondo, K. and Sato, T. 1991. Studies on crude drugs effective on visceral larva migrans. XII. Nematocidal principles in oakmoss absolute and nematocidal activity of 2,4-dihydroxybenzoates. Chem. Pharm. Bull. 39, 1043-1046.

Bai, N., He, K., Roller, M., Zheng, B., Chen, X., Shao, Z. Peng, T. and Zheng, Q. 2008. Active compounds from Lagerstroemia speciosa, Insulin-like glucose uptakestimulatory/inhibitory and adipocyte differentiation-Inhibitory activities in 3T3-L1 cells. J. Agric. Food Chem. 56, 11668-11674.

Bell, C., \& Hawthorne, S. 2008. Ellagic acid, pomegranate and prostate cancer-A mini review. Journal of Pharmacy and Pharmacology. 60, 139-144.

Cambie, R. C., Lal, A. R., Rutledge, P. S. and Woodgate, P. D. 1991. Ent-14[s],16ß,17-trihydroxyatisan-3-one and further constituents from Euphorbia fidjiana. Phytochemistry. 30, 287-292.

Cheenpracha, S. 2004. Chemical constituents from the seeds of Cerbera manghas and the stems of Derris trifoliata. Master of Science Thesis in Organic Chemistry, Prince of Songkla Universitry, p 137.

Chen, C. Y., Huang, L., Chen, L. J., Lo, W. L., Kuo, S. Y., Wang, Y. D., Kuo, S. H. and Hsieh, T . J. 2008. Chemical constituents from the leaves of Michelia alba. Chemistry of Natural Compounds. 44, 137-139.

Claeson, P., Andersson, R. and Samuelsson, G. 1991. T-Cadinol: A pharmacologically active constituent of scented marrh: introductory pharmacological characterization and high field ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ data. Planta medica. 57, 352-356.

Daengrot, C. 2006. Chemical constituents from the Bark of Heritiera littoralis. Master of Science Thesis in Organic Chemistry, Prince of Songkla Universitry, p 59-61.

Della Greca, M., Monaco, P. and Previtera, L. 1990. Stigmasterols from Typha latifolia. J. Nat. Prod. 53, 1430-1435.

Dolle, F., Hetru, C., Roussel, J. P., Rousseau, B., Sobrio, F., Luu, B. and Hoffmann, J. A. 1991. Synthesis of a tritiated-3-dehydroecdysteroid putative precursor of ecdysteroid biosynthesis in Locusta migratoria. Tetrahedron. 47, 7067-7080.

Farines, M., Cocallemen, S. and Soulier, J. 1988. Triterpene alcohols, 4-methylsterols and 4-desmethylsterols of eggplant seed oil. A new phytosterol. Lipids. 23, 349-354. Galal, A. M., Ibrahim, A-R. S., Mossa, J. S. and El-Feraly, F. S. 1999. Microbial transformation of parthenolide. Phytochemistry. 51, 761-765.

Kotwal, G. J. 2007. Genetic diversity-independent neutralization of pandemic viruses (e.g. HIV), potentially pandemic (e.g. H5N1 strain of influenza) and carcinogenic (e.g. HBV and HCV) viruses and possible agents of bioterrorism (variola) by enveloped virus neutralizing compounds (EVNCs). Vaccine. 26, 3055-3058.

Likhitwitayawuid, K., Runggrungsi, N., Boriboon, M., Lange, G. L. and Decicco, C. P. 1998. Constituents of the bark of Michelia longifolia. J. Sci. Soc. Thailand. 14, 7376.

Macias, F. A., Simonet, A. M. and Esteban, M. D. 1994. Potential allelopathic lupine triterpenes from bioactive fractions of Melilotus messanensis. Phytochemistry. 36, 1369-1379.

Ming, C. W., Mayer, R., Zimmermann, H. and Rucker, G. 1989. A non-oxidized melampolide and other germacranolides from Aristolochia yunnanensis. Phytochemistry. 28, 3233-3234.

Reddy, M. K., Gupta, S. K., Jacob, M. R., Khan, S. I., \& Ferreira, D. 2007. Antioxidant, antimalarial and antimicrobial activities of tannin-rich fractions, ellagitannin and phenolic acids from Punica granatum L. Planta Medica. 73, 461467.

Shwartz, E., Glazer, I., Bar-Ya'akov, I., Matityahu, I., Bar-Ilan, I., Holland, D. and Amir, R. 2009. Changes in chemical constituents during the maturation and ripening of two commercially important pomegranate accessions. Food Chemistry. 115, 965973.

Smitinand, T. 1980. Thai Plant Names (Botanical Name-Vernacular Names)., $2^{\text {nd }}$ ed., Funny Publishing Limited Partnership, Bangkok, Thailand, p 226.

Susidarti, R.A., Rahmani, M., Ismail, H. B., Sukari, A., Hin, T-Y. Y., Lian, G. C., Ali, A. M., Kulip, J. and Waterman, P. G. 2006. A new coumarin and triterpenes from Malaysian Micromelum minutum. Natural Product Research. 20, 145-151.

Thongdeeying, P. 2005. Chemical constituents from the leaves of Ceriops decandra (Giff.) Ding Hou. Master of Science Thesis in Organic Chemistry, Prince of Songkla Universitry, p 54-55.

Xie, L. H., Akao, T., Hamasaki, K., Deyama, T. and Hattori, M. 2003. Biotransformation of pinoresinol diglucoside to mammalian lignans by human intestinal microflora, and isolation of enterococcus faecalis strain PDG-1 responsible for the Transformation of (+)-pinoresinol to (+)-lariciresinol. Chem. Pharm. Bull. 51, 508-515.

Xie, Y., Morikawa, T., Ninomiya, K., Imura, K. and Muraoka, O. 2008. Medicinal Flowers. XXIII. ${ }^{1}$) New Taraxastane-Type Triterpene, punicanolic acid, with tumor necrosis factor-a inhibitory activity from the flowers of Punica granatum. Chem. Pharm. Bull. 56, 1628—1631.

Yue, J. M., Chen, S. N., Lin, Z. W. and Sun, H. D. 2001. Sterols from the fungus Lactarium volemus. Phytochemistry. 56, 801-806.

APPENDIX

Figure 21 IR (neat) spectrum of compound CMD1

Figure $22{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD1

Figure $23{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD1

Figure $24{ }^{\mathrm{I}} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD2

Figure $25{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD2

Figure 26 IR (neat) spectrum of compound CMD3

Figure $27{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD3

Figure $28{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD3

Figure $29{ }^{1} \mathrm{H}$ NMR (300 MHz) (CDCl_{3}) spectrum of compounds CMD4+CMD5

Figure 30 UV (MeOH) spectrum of compound CMD6

Figure 31 IR (neat) spectrum of compound CMD6

Figure $32{ }^{\mathrm{I}} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD6

Figure $33{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD6

Figure $34{ }^{\mathrm{I}} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD7

Figure $35{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD7

Figure $36{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD8

Figure $37{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD8

Figure $38{ }^{\mathrm{T}} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD9

Figure $39{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD9

Figure $40{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD10

Figure $41{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD10

Figure 42 IR (neat) spectrum of compound CMD11

Figure $43{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD11

Figure $44{ }^{13} \mathrm{C}$ NMR (75 MHz) (CDCl_{3}) spectrum of compound CMD11

Figure 45 IR (neat) spectrum of compound CMD12

Figure $46{ }^{\mathrm{I}} \mathrm{H}$ NMR (300 MHz) (DMSO- $\mathrm{d}_{6}+\mathrm{CDCl}_{3}$) spectrum of compound CMD12

Figure $47{ }^{13} \mathrm{C}$ NMR (75 MHz) (DMSO- $\mathrm{d}_{6}+\mathrm{CDCl}_{3}$) spectrum of compound CMD12

Figure 48 IR (neat) spectrum of compound CMD13

Figure $49{ }^{1} \mathrm{H}$ NMR (300 MHz$)\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD13

Figure $50{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound CMD13

Figure 51 IR (neat) spectrum of compound JPD1

Figure $52{ }^{\mathrm{I}} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD1

Figure $53{ }^{13} \mathrm{C}$ NMR (75 MHz) (CDCl_{3}) spectrum of compound JPD1

Figure $54{ }^{\mathrm{I}} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD2

Figure $55{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD2

Figure 56 IR (neat) spectrum of compound JPD3

Figure $57{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD3

Figure $58{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD3

Figure 59 IR (neat) spectrum of compound JPD4

Figure $60{ }^{\mathrm{I}} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD4

Figure $61{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD4

Figure 62 IR (neat) spectrum of compound JPD5

Figure $63{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD5

Figure $64{ }^{13} \mathrm{C}$ NMR (75 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD5

Figure 65 IR (neat) spectrum of compound JPD6

Figure $66{ }^{1} \mathrm{H}$ NMR $(300 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6

Figure $67{ }^{13} \mathrm{C}$ NMR (75 MHz) (CDCl_{3}) spectrum of compound JPD6

Figure 68 DEPT $135^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6

Figure 69 DEPT $90^{\circ}\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6

Figure 70 2D COSY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6

Figure 71 2D HMQC $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6

Figure 72 2D HMBC ($\left.\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6

Figure 73 2D NOESY $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD6

Figure 74 EIMS spectrum of compound JPD6

Figure 75 HRFAB spectrum of compound JPD6

Figure 76 IR (neat) spectrum of compound JPD7

Figure $77{ }^{1} \mathrm{H}$ NMR (300 MHz) $\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD7

Figure $78{ }^{13} \mathrm{C}$ NMR $(75 \mathrm{MHz})\left(\mathrm{CDCl}_{3}\right)$ spectrum of compound JPD7

VITAE

Name	Miss Jintana Pongpuntaruk
Student ID	5110220008

Educational Attainment

Degree	Name of Institution	Year of Graduation
B.Sc.	Prince of Songkla	2008
(Chemistry)	University	

Scholarship Awards during Enrolment
 The Center for Innovation in Chemistry: Postgraduate Education and Research Program in Chemistry (PERCH-CIC)

List of Publication and Proceedings

Proceedings

Pongpuntaruk, J., Ponglimanont, C. and Karalai, C. 2010. Sesquiterpene Lactones from the Root of Michelia alba DC. $16^{\text {th }}$ National Graduate Research Conference, Maejo University, Chiang Mai, Thailand, March 11-12, 2010 pp. 13 (Poster presentation)

