Contents

		Page
บทคัด	าย่อ	(3)
Abst	ract	(7)
Ackr	nowledgement	(11)
Contents		(13)
List	of Tables	(14)
List	of Figures	(15)
Abbı	reviations and Symbols	(20)
Chap	oter	
I	Introduction	1
II	Literature Review	5
III	General Materials and Methods	28
IV	Results	38
	4.1 Torpedospora and Swampomyces	38
	4.2 Haligena	74
	4.3 Remispora and Naufragella	90
	4.4 Marinospora, Lautisporopsis, Ocostaspora,	
	Nautosphaeria, and Carbosphaerella	106
	4.5 Other fungi: Bathyascus, Marinosphaera and Pedumispora	119
V General Discussion and Conclusion		141
References		179
Appendix		198
Publications and International Presentations		211
Vitae		213

List of Tables

Table		Page
1.	Some secondary metabolites discovered from marine fungi	8
2	Types of ascospore appendage ontogeny	12
3.	Fungi isolated from materials, collected in Thailand and other	
	countries and used for the molecular study	29
4.	Cultures obtained from various culture collections and used	
	for the molecular study	30
5.	Primers used for PCR and DNA sequencing	33
6.	Comparisons of morphological characteristics of Torpedospora	
	and Swampomyces species	43
7.	Comparisons of morphological features between Torpedospora,	
	Swampomyces and other related orders in the Hypocreomycetidae,	
	Sordariomycetes	45
8.	Summary of results from <i>Torpedospora</i> and <i>Swampomyces</i> analyses	51
9.	The morphological characteristics of six Remispora species at	
	light and ultrastructural levels	94
10.	Comparison of the morphological characters used for delineation the	
	fungi in the orders Sordariales, Xylariales, Hypocreales (Bionectriaceae	e)
	and Lulworthiales	165
11.	Marine unitunicate Ascomycota await family and ordinal assignment	
	at the molecular level	175
12.	The Halosphaeriales await assignment at the molecular level	177

List of Figures

Figure	e P	age
1.	Drawings of ascospores to show wall layers and spore appendage	
	ontogenies	14
2.	Diagrams showing structure of the genes and set of primers	26
3.	Morphological features of Torpedospora species	41
4.	Morphological features of Swampomyces species	42
5.	One of six MPTs inferred from SSU rRNA sequences, generated	
	with maximum parsimony analysis (Torpedospora alone)	54
6.	One of 12 MPTs inferred from SSU rRNA sequences with	
	additional taxa, generated with maximum parsimony analysis	
	(Torpedospora alone)	55
7.	One of four MPTs inferred from LSU rRNA sequences, generated	
	with maximum parsimony analysis (Torpedospora alone)	57
8.	One of ten MPTs inferred from combined SSU+LSU rRNA sequences,	
	generated with maximum parsimony analysis (Torpedospora alone)	58
9.	One of two MPTs inferred from combined beta-tubulin+ITS1-5.8S-ITS2	
	sequences, generated with maximum parsimony analysis (Torpedospora	
	alone)	60

Figur	e .	Page
10.	The 50% majority consensus tree inferred from SSU rRNA sequences,	
	generated with maximum parsimony analysis	
	(Torpedospora+Swampomyces)	62
11.	The 50% majority consensus tree inferred from LSU rRNA sequences,	
	generated with maximum parsimony analysis	
	(Torpedospora+ Swampomyces)	63
12.	One of two MPTs inferred from combined SSU+LSU rRNA sequences,	
	generated with maximum parsimony analysis (Torpedospora+	
	Swampomyces)	65
13.	A single MPT inferred from combined SSU+LSU rRNA sequences,	
	generated with weighted maximum parsimony analysis (Torpedospora	
	+ Swampomyces)	66
14.	Morphological features of Haligena species	76
15.	One of two MPTs inferred from LSU rRNA sequences of the genus	
	Haligena, generated with weighted maximum parsimony analysis	
	(step matrix)	81
16.	Bayesian analysis of partial LSU rRNAsequences of the genus Haligena	82
17.	Morphological features of <i>Naufragella</i> and <i>Remispora</i> species	93

Figur	e	Page
18.	One of two MPTs inferred from LSU rRNA sequences of the genera	
	Naufragella and Remispora, generated with maximum parsimony	
	analysis	101
19.	Morphological features of Marinospora, Ocostaspora, Nautosphaeria,	
	Lautisporopsis and Carbosphaerella	110
20.	One of two MPTs inferred from LSU rRNA sequences of Marinospora,	
	Ocostaspora and Nautosphaeria, generated with maximum parsimony	
	analysis	114
21.	Morphological features of Marinosphaera mangrovei	122
22.	Morphological features of Pedumispora rhizophorae and Bathyascus	
	tropicalis	123
23.	One of ten MPTs inferred from SSU rRNA sequences of Bathyascus	
	sp., generated with maximum parsimony analysis	127
24.	One of two MPTs inferred from combined SSU+LSU rRNA sequences	
	of Bathyascus sp., generated with maximum parsimony analysis	128
25.	One of 36 MPTs inferred from SSU rRNA sequences of	
	Marinosphaera mangrovei, generated with maximum parsimony	
	analysis	130

Figure		Page
26.	One of two MPTs inferred from LSU rRNA sequences of	
	Marinosphaera mangrovei, generated with maximum parsimony	
	analysis	131
27.	One of two MPTs inferred from combined SSU+LSU rRNA	
	sequences of Marinosphaera mangrovei with Ceratocystis sequences,	
	generated with maximum parsimony analysis	133
28.	One of two MPTs inferred from combined SSU+LSU rRNA sequences	
	of Marinosphaera mangrovei without Ceratocystis sequences,	
	generated with maximum parsimony analysis	134
29.	One of 20 MPTs inferred from LSU rRNA sequences of <i>Pedumispora</i>	
	rhizophorae, generated with maximum parsimony analysis	135
30.	A single MPT inferred from LSU rRNA sequences of <i>Pedumispora</i>	
	rhizophorae with less taxa of the Xylariales, generated with maximum	
	parsimony analysis	137
31.	Scheme of proposed evolutionary trends within the Halosphaeriaceae	149
32.	One of three MPTs inferred from LSU rRNA sequences of all	
	halosphaerialean taxa, generated with maximum parsimony analysis	154
33.	One of three MPTs inferred from LSU rRNA sequences of all	
	halosphaerialean taxa, generated with maximum parsimony analysis,	
	with different type of appendage ontogenies indicated	155

Figur	e	Page
34.	One of three MPTs inferred from LSU rRNA sequences of all	
	halosphaerialean taxa, generated with maximum parsimony	
	analysis, with presence or absence of catenophyses and periphyses	
	indicated	161
35.	One of three MPTs inferred from LSU rRNA sequences of all	
	halosphaerialean taxa, generated with maximum parsimony analysis,	
	with presence of asci and ascus structures indicated	162
36.	One of three MPTs inferred from LSU rRNA sequences of different	
	marine ascomycete lineages, generated with maximum parsimony	
	analysis	172
37.	A cladogram inferred from LSU rRNA sequences of marine	
	ascomycetes, representing lineages in terrestrial and marine, generated	
	with maximum parsimony analysis	173

Abbreviations and Symbols

°C = degree Celsius

Fig. = figure

g = gram

mg = milligram

ng = nanogram

1 = liter

 μl = microliter

 $\mu m = micrometer$

nm = nanometer

M = molar

 μM = micromolar

mM = millimolar

SEM = scanning electron microscope

TEM = transmission electron microscope

pers. comm. = personal communication